Random chance may explain hereditary disease

January 10, 2014, Karolinska Institutet

(Medical Xpress)—A new study from Karolinska Institutet and the Ludwig Institute for Cancer Research shows that random chance decides whether the gene copy you inherit from your mother or the one from your father is used something which in turn may determine your risk of hereditary illnesses. The research, which is presented in the journal Science, may explain why an illness only afflicts some individuals even if they are carrying the same gene copy as their healthy relatives.

We are all genetic mixtures of our parents. There are two copies of each gene in our body, one inherited from our mother and one from our father. Most studies conducted in this field have shown that both gene copies (i.e. the mother's and the father's) are used to the same extent. With the aid of new technology, a research group at Karolinska Institutet in Sweden and the Ludwig Institute for Cancer Research has now been able to show that gene activity is more dynamic and unpredictable than what was previously believed. There is often only one single, randomly chosen, gene copy active in each individual cell. Which gene copy is active may also change over time.

"This dynamic phenomenon inside cells has not previously been described, as the methods for studying gene activity have been based on analysing hundreds to thousands of cells at a time", says study leader Dr Rickard Sandberg. "This gives you an average, where the contribution of the copies from the father and mother of the same gene, known as the alleles, are mixed together. We have instead developed a method that allows us to analyse the gene activity in individual cells, which enabled this discovery."

The discovery casts new light on many issues in biomedical research, according to Rickard Sandberg. For example, the discovery could help explain how apparent differences can arise in identical twins, despite having nearly identical genes. The inherent randomness of how the parents' copies are used in the cell might account for their phenotypic differences. Many diseases have previously been hard to explain as they have only developed in a subset of patients at risk, or caused symptoms of varying severity. Stochastic expression of a healthy and disease allele might help account for such variability in disease outcomes.

"This discovery is also interesting for basic research regarding gene activity and regulation",says Dr Sandberg. For example, it highlights the fact that studies and models of should be made using resolution for both the maternal and paternal alleles."

Explore further: A new method for analyzing gene expression in single cells opens a window into tumors and other tissues

More information: "Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells." Qiaolin Deng, Daniel Ramsköld, Björn Reinius, and Rickard Sandberg. Science 10 January 2014: 343 (6167), 193-196. DOI: 10.1126/science.1245316

Related Stories

A new method for analyzing gene expression in single cells opens a window into tumors and other tissues

September 22, 2013
A team of researchers affiliated with Ludwig Cancer Research and the Karolinska Institutet in Sweden report in the current issue of Nature Methods a dramatically improved technique for analyzing the genes expressed within ...

Color-coded cells reveal patchwork patterns of X chromosome silencing in female brains

January 8, 2014
Producing brightly speckled red and green snapshots of many different tissues, Johns Hopkins researchers have color-coded cells in female mice to display which of their two X chromosomes has been made inactive, or "silenced."

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.