Random chance may explain hereditary disease

January 10, 2014

(Medical Xpress)—A new study from Karolinska Institutet and the Ludwig Institute for Cancer Research shows that random chance decides whether the gene copy you inherit from your mother or the one from your father is used something which in turn may determine your risk of hereditary illnesses. The research, which is presented in the journal Science, may explain why an illness only afflicts some individuals even if they are carrying the same gene copy as their healthy relatives.

We are all genetic mixtures of our parents. There are two copies of each gene in our body, one inherited from our mother and one from our father. Most studies conducted in this field have shown that both gene copies (i.e. the mother's and the father's) are used to the same extent. With the aid of new technology, a research group at Karolinska Institutet in Sweden and the Ludwig Institute for Cancer Research has now been able to show that gene activity is more dynamic and unpredictable than what was previously believed. There is often only one single, randomly chosen, gene copy active in each individual cell. Which gene copy is active may also change over time.

"This dynamic phenomenon inside cells has not previously been described, as the methods for studying gene activity have been based on analysing hundreds to thousands of cells at a time", says study leader Dr Rickard Sandberg. "This gives you an average, where the contribution of the copies from the father and mother of the same gene, known as the alleles, are mixed together. We have instead developed a method that allows us to analyse the gene activity in individual cells, which enabled this discovery."

The discovery casts new light on many issues in biomedical research, according to Rickard Sandberg. For example, the discovery could help explain how apparent differences can arise in identical twins, despite having nearly identical genes. The inherent randomness of how the parents' copies are used in the cell might account for their phenotypic differences. Many diseases have previously been hard to explain as they have only developed in a subset of patients at risk, or caused symptoms of varying severity. Stochastic expression of a healthy and disease allele might help account for such variability in disease outcomes.

"This discovery is also interesting for basic research regarding gene activity and regulation",says Dr Sandberg. For example, it highlights the fact that studies and models of should be made using resolution for both the maternal and paternal alleles."

Explore further: A new method for analyzing gene expression in single cells opens a window into tumors and other tissues

More information: "Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells." Qiaolin Deng, Daniel Ramsköld, Björn Reinius, and Rickard Sandberg. Science 10 January 2014: 343 (6167), 193-196. DOI: 10.1126/science.1245316

Related Stories

A new method for analyzing gene expression in single cells opens a window into tumors and other tissues

September 22, 2013
A team of researchers affiliated with Ludwig Cancer Research and the Karolinska Institutet in Sweden report in the current issue of Nature Methods a dramatically improved technique for analyzing the genes expressed within ...

Color-coded cells reveal patchwork patterns of X chromosome silencing in female brains

January 8, 2014
Producing brightly speckled red and green snapshots of many different tissues, Johns Hopkins researchers have color-coded cells in female mice to display which of their two X chromosomes has been made inactive, or "silenced."

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.