Five questions: The recognition of clinical informatics as medical sub-specialty

January 9, 2014

Clinical informatics, a field at the intersection of clinical medicine and information technology, has reached a new milestone: Physicians can now become board-certified in this medical sub-specialty.

Christopher Longhurst, MD, who is the chief medical information officer at Lucile Packard Children's Hospital Stanford and the leader of a new Stanford clinical informatics fellowship training program for physicians, talked with science writer Erin Digitale about this field's history and where it's going.

Q: First off, what exactly is clinical informatics?

Longhurst: In clinical informatics, we leverage to improve outcomes for patients. Research has been done in this area since the 1960s and '70s, but what's different now is the ubiquitous nature of computing devices. Everybody has access to information and communications technologies. The majority of U.S. hospitals are implementing an electronic health record.

And yet electronic health records are not something most front-line doctors are really excited about—they can be seen as disruptive to the patient-care process. I really think we have yet to deliver on the promise of . There's a tremendous opportunity to use data in those records to build a health-care system that can make personalized care recommendations and automatically learn from patients.

Q: How is clinical informatics changing the way that medical discoveries are made?

Longhurst: The idea when I was in grad school was that randomized trials were the gold standard for medical evidence. But, increasingly, people are recognizing that this "level A" evidence is cost-prohibitive to generate. And the subjects are so narrowly selected that the results are not always generalizable. I know what medication to give a white male in his 50s because of , but what if I have a different kind of patient?

So a lot of people are advocating for a shift away from traditional trials toward using enormous, anonymized data sets gleaned from existing electronic medical records. The idea is that you can make valid conclusions based on retrospective research if the data set is large enough.

That's why we want to create a "patients like mine" button in every electronic health record that would essentially allow real-time comparative-effectiveness studies. Then, if you're treating a 40-year-old, half-Vietnamese, half-black woman for high blood pressure, you can instantly generate a similar cohort and see which medications have provided the best outcomes for those patients. It's a really exciting concept that has already been used once at Lucile Packard Children's Hospital Stanford to help make a treatment decision for a child with a rare autoimmune disease.

A "patients like mine" button would also help us start to understand what questions doctors ask. Today, we don't always know the information needs of physicians. If we start to collect this meta-data, we can better focus randomized, controlled trials so that they match doctors' biggest questions.

Q: How does Stanford lead the field?

Longhurst: Stanford is often considered the place where clinical informatics all started. The father of this field, Ted Shortliffe, MD, PhD, was a graduate student at Stanford when, in the 1970s, he wrote a software program called MYCIN to make decisions about prescribing antibiotics. MYCIN performed better at those decisions than your average internist. Shortliffe came back to Stanford in the early '80s and founded the division of , now the Stanford Center for Biomedical Informatics Research, starting the master's and PhD programs.

More recently, we have a really solid history of finding unique ways to use and study : In addition to making a treatment decision for a patient with a rare disease, we've provided automatic daily updates to parents whose infants are hospitalized in our neonatal intensive care unit, reduced unnecessary use of blood transfusions, assisted in selecting the appropriate IV fluid to give to kids and more, all under this one umbrella.

We have nine physicians who received the new board certification, placing us among the largest programs in the country.

Q: Why was this formal recognition of the field as a medical sub-specialty needed?

Longhurst: In the past, there was never a formal approach to ensuring that physicians were adequately trained in clinical informatics. Creation of the sub-specialty allows us to standardize elements of training, create training opportunities and create a recognized credential for people seeking to hire in the field.

Q: What's the role of Stanford and Lucile Packard Children's Hospital Stanford in educating the next wave of clinical informatics specialists?

Longhurst: We're establishing a two-year fellowship to train more doctors. The unique thing about clinical informatics as a board-certified sub-specialty is that physicians from any specialty can pursue subspecialty training; physicians from a huge variety of backgrounds have expressed interest in our program.

We're really excited that the fellows will have hands-on opportunities to work in a variety of settings in the IT groups at Lucile Packard Children's Hospital Stanford, Stanford Hospital & Clinics and the Stanford University School of Medicine. We're also partnering with Kaiser Permanente and the Palo Alto Medical Foundation to provide opportunities for fellows to see community care networks, and with HP Labs for an industry opportunity.

Stanford's location in Silicon Valley and the partnership we have with industry, particularly HP Labs, is another factor that makes our fellowship program stand out. An unrestricted grant from HP to Lucile Packard Children's Hospital Stanford for fellowship training has already enabled us to support the development of a quality and safety dashboard for caregivers that can automatically alert us to a variety of potential problems in patient care.

Explore further: Pop-up reminders in electronic medical records help eliminate unnecessary blood transfusions

Related Stories

Pop-up reminders in electronic medical records help eliminate unnecessary blood transfusions

April 19, 2011
(PhysOrg.com) -- In one of the first studies to examine how electronic reminders unrelated to medication safety could improve clinical care, researchers from the Stanford University School of Medicine and Lucile Packard Children’s ...

Doctors experienced with using EHRs say they add value for patients

January 3, 2014
A new study in Health Services Research finds nearly three-quarters of physicians using electronic health records (EHRs) in 2011 said there were clinical benefits when patients' medical histories were kept in digital files. ...

Electronic health records can measure patient-centered care

November 22, 2013
Although electronic health records (EHR) are primarily used to store patient clinical data, the non-clinical data they collect may be used to measure patient-centeredness of primary care practices, finds a new study in Health ...

Can computer-based decision support control health care costs?

April 16, 2013
William M. Tierney, M.D. focuses on the potential of electronic medical systems and computer-based decision support to control healthcare costs in "Controlling costs with computer-based decision support: a hammer, a scalpel ...

Recommended for you

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

Team eradicates hepatitis C in 10 patients following lifesaving transplants from infected donors

April 30, 2017
Ten patients at Penn Medicine have been cured of the Hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease. The findings point to new strategies for increasing ...

'bench to bedside to bench': Scientists call for closer basic-clinical collaborations

March 24, 2017
In the era of genome sequencing, it's time to update the old "bench-to-bedside" shorthand for how basic research discoveries inform clinical practice, researchers from The Jackson Laboratory (JAX), National Human Genome Research ...

The ethics of tracking athletes' biometric data

January 18, 2017
(Medical Xpress)—Whether it is a FitBit or a heart rate monitor, biometric technologies have become household devices. Professional sports leagues use some of the most technologically advanced biodata tracking systems to ...

Financial ties between researchers and drug industry linked to positive trial results

January 18, 2017
Financial ties between researchers and companies that make the drugs they are studying are independently associated with positive trial results, suggesting bias in the evidence base, concludes a study published by The BMJ ...

Best of Last Year – The top Medical Xpress articles of 2016

December 23, 2016
(Medical Xpress)—It was a big year for research involving overall health issues, starting with a team led by researchers at the UNC School of Medicine and the National Institutes of Health who unearthed more evidence that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.