New tool to identify genetic risk factors

January 30, 2014, The Geisel School of Medicine at Dartmouth
This image shows four out of 11 modules identified by an algorithm to the filtered network. This classification shows relationships between diseases and traits based on shared etiology for certain phenotypes. The diseases and traits in these clusters have more connections to each other than to others in the network: the bolder the line, the stronger the connection. Credit: Institute for Quantitative Biomedical Sciences

Dartmouth researchers developed a new biological pathway-based computational model, called the Pathway-based Human Phenotype Network (PHPN), to identify underlying genetic connections between different diseases as reported in BioDataMining this week. The PHPN mines the data present in large publicly available disease datasets to find shared SNPs, genes, or pathways and expresses them in a visual form.

"The PHPN offers a bird's eye view of the diseases and phenotype's relationships at the systems level," said Christian Darabos, PhD, post-doctoral fellow, Institute for Quantitative Biomedical Sciences (iQBS), Dartmouth College.

The PHPN uses information in human disease networks in conjunction with network science tools to show clusters of related disorders sharing common genetic backgrounds. It does so without the typical clinical classification of disease, in which all heart disease or all cancers are grouped together, based on clinical presentation. Dartmouth geneticists instead rely on the information contained in the PHPN's topology to automatically classify traits and diseases by their shared genetic mechanisms, such as common genes or pathways. PHPN explores the connections between the layers of the networks to find patterns and relationships.

"The intuitive network representation of the knowledge mined from several large-scale datasets makes the information accessible to anyone. It lies at the crossroads of computational genetics, systems biology, information theory, and network science," Darabos said.

PHPN supports the integration of genomic and phenotypic data to uncover significant links between traits, attributes, and disease. This offer tremendous potential in identifying risk factors for certain diseases. At the same time, it can reveal important targets for therapeutic intervention.

"As a proof of concept, the PHPN has proven capable of identifying well documented interactions, and many novel links that remain to be explored in depth," said Darabos.

The PHPN reveals biological connections between seemingly disparate displays of genetic properties and offers a unique view of the architecture of disease.

This tool can help researchers identify areas for further investigation based on connections it uncovers. "The PHPN is a hypothesis-generating tool, potentially capable of identifying yet uncharacterized common drug targets," said Darabos.

As a next step, iQBS researchers will refine statistical methods, isolate networks for optimal results, and compare previous work on phenotype networks.

Explore further: More links found between schizophrenia, cardiovascular disease

More information: www.biodatamining.org/content/7/1/1/abstract

Authors of the paper, "The Multiscale Backbone of the Human Phenotype Network based on Biological Pathways," include: Jason Moore, PhD; Scott Williams, PhD; Christian Darabos, PhD, Marquitta White, Britney Graham, and Derek Leung.

Related Stories

More links found between schizophrenia, cardiovascular disease

January 31, 2013
A new study, to be published in the Feb. 7, 2013 issue of the American Journal of Human Genetics, expands and deepens the biological and genetic links between cardiovascular disease and schizophrenia. Cardiovascular disease ...

Researchers identify networks of neurons in the brain that are disrupted in psychiatric disease

May 23, 2013
Studying the networks of connections in the brains of people affected by schizophrenia, bipolar disease or depression has allowed Dr. Peter Williamson, from Western University, to gain a better understanding of the biological ...

Computer algorithms help find cancer connections

May 1, 2013
Powerful data-sifting algorithms developed by computer scientists at Brown University are helping to untangle the profoundly complex genetics of cancer. In a study reported today in the New England Journal of Medicine, researchers ...

11 new genetic associations for asthma-with-hay fever

January 28, 2014
23andMe has participated in the first ever genome-wide association study of the combined asthma-with-hay fever phenotype. Led by researchers at the QIMR Berghofer Medical Research Institute, the study identified 11 independent ...

Study finds gene network associated with alcohol dependence

November 21, 2013
There is good evidence from studies of families and twins that genetics plays an important role in the development of alcoholism. However, hundreds of genes likely are involved in this complex disorder, with each variant ...

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.