Drought contributed to typhus epidemics in Mexico from 1655 to 1918, study shows

February 13, 2014 by Matt Mcgowan
Drought contributed to typhus epidemics in Mexico from 1655 to 1918, study shows
Jordan Burns and Rodolfo Acuna at the Zocalo, the central square in the heart of historic downtown Mexico City.

(Medical Xpress)—Epidemiological data integrated with climate data taken from tree-ring estimates of soil moisture levels demonstrate that drought contributed to the spread of typhus in Mexico from 1655 to 1918, according to a new study by researchers at the University of Arkansas.

The study has modern-day policy implications because although typhus can be treated with modern antibiotics, it remains a threat in remote, impoverished areas of South America, Asia and Africa and could reemerge as a serious infectious disease, especially where social strife and underdeveloped public health programs persist.

The researchers describe their findings in an article published Feb. 11 in Emerging Infectious Diseases, a Centers for Disease Control and Prevention journal that tracks and analyzes disease trends.

"Historical records show that typhus has traditionally accompanied war, famine and poverty," said David Stahle, a Distinguished Professor of geosciences. "Now, because of Mexico's rich historical record of epidemic disease, we can see that , as reconstructed by tree-ring chronologies, caused conditions that allowed typhus to flourish in central Mexico over a 250-year period."

Stahle and Jordan Burns, a graduate student in geography at the U of A, compared historical records of 22 typhus epidemics in central Mexico with estimates based on tree-ring reconstructions. They analyzed data gleaned from almanacs, diaries and personal accounts, as well as medical and death records from hospitals, physicians, cemeteries and municipalities. They compared this with instrumental data for the Palmer Drought Severity Index, or PDSI, an index of the effects of temperature and precipitation on soil moisture dating back to 1895.

Burns, Stahle, and their collaborator Rodolfo Acuna, a professor of microbiology at the National University in Mexico City, observed a significant relationship between periods of drought and famine in rural, agricultural regions of central Mexico. Below-average tree growth, drought and low crop yields occurred during 19 of the 22 typhus epidemics.

"The observed relationship between drought and typhus epidemics in colonial and modern Mexico is curious because drought has not been specifically considered a risk factor for typhus," Burns said. "But drought, much like war and natural disasters, caused famine in poor, agricultural regions and forced impoverished refugees to move into already crowded urban areas where infrastructure and sanitary systems were insufficient."

Epidemic is an infectious disease caused by a bacterium transmitted between people by body lice. The disease spreads where conditions are crowded and unsanitary. It is recognized for its high mortality rate throughout human history, particularly before modern sanitary practices and the availability of antimicrobial drugs. Despite these advances, the disease persists in some areas of Africa, South America and Asia and has not been eliminated from industrialized regions, because body lice infestation still occurs in homeless populations of Europe and the United States.

For more than 30 years, Stahle has taken core samples from trees and examined the chronology of their rings to help explain the societal impact of drought and other climate changes. Specifically, his research has added rich information to explanations about the migration of North America's indigenous people and the demise of Mesoamerican civilization.

Stahle's recently published 1,238-year-long tree-ring chronology, the longest and most accurate of its kind for Mesoamerica, was the first to reconstruct the climate of pre-colonial Mexico on an annual basis over a period of more than a thousand years. That study identified four ancient megadroughts and their exact years. Previous research found large and epic droughts in North America during the eighth and 16th centuries.

Related Stories

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.