Researcher studies ice worms to help extend organ life for transplants

February 10, 2014 by Ed Moorhouse, Rutgers University
Rutgers researcher studies ice worms to help extend organ life for transplants
Ice worms can live in cold temperatures because of their elevated energy levels.

The cold weather keeping much of the country in a deep freeze this winter can quite literally be a real drain on a person's health. A Rutgers University–Camden researcher is looking for a way to keep energy levels up, even when the temperature drops.

"If you want to live in the cold, you have to make lots of energy," says Daniel Shain, a professor of biology. "That means your cells would have to produce more ATP (Adenosine triphosphate), the currency of energy for all life on Earth. When we get cold, our ATP levels plummet."

Maintaining high energy levels in could lead to improvements in organ transplantation. Donated organs must be transplanted into recipients during a very small timeframe – usually 24 hours or less - but that window could be extended by increasing the ATP levels while the organ is on ice.

To find the mechanism for maintaining high ATP, Shain has dedicated his research to studying ice worms, the only known to spend their entire lives in glacial ice.

"Most single-cell organisms that can live on ice – organisms that have been around for hundreds of millions of years – have these elevated ATP levels," says Shain, who notes that ice worms have are multi-cellular and complex, like humans. "We have tried to manipulate human cells to have these elevated ATP levels to mimic ice worm physiology. The idea is to try and keep these organs alive from days to weeks instead of hours."

Shain says it's a very simple idea, but actually doing it is a challenge because human cells are so much more complex than single-cell organisms like bacteria, algae, and fungi.

Rutgers researcher studies ice worms to help extend organ life for transplants

"The easiest way to think about it is that we have a thermostat in our body that regulates energy," he says. "It keeps from getting too high. In ice worms, that thermostat is broken. They have all this extra ATP. This is what makes ice worms somewhat extraordinary in the animal world. They're one of very few animals that have figured it out."

Ice worms, however, aren't immune to freezing temperatures. Shain says they survive on coastal glaciers where the temperature remains constant, which is why they aren't found on inland glaciers, where it is much colder. If the temperature were to drop a couple of degrees below zero, the ice worms would die.

"They are paradoxically very sensitive to freezing," Shain says. "They're able to live right at the freezing point thanks to their elevated ATP levels.

Shain, who spent last summer searching for in Tibet, says he and students in his lab have tried using different drugs to act on enzymes within human cell to change strictly regulated ATP levels without much success.

"What needs to happen is we need to get rid of a particular enzyme, but that's counterintuitive Trying to break that thermostat in human cells is experimentally difficult," he says. "We now feel like we partially understand the mechanism for making this change and we've only just scratched the surface of applying it to human cells. We've learned it's not so easy, but it's not impossible, either."

Explore further: Elucidation of mechanism underlying acquisition of specificity for ATP

Related Stories

Elucidation of mechanism underlying acquisition of specificity for ATP

October 4, 2013
The mechanism underlying the acquisition of specificity for ATP has been elucidated by researchers in a new report published in Scientific Reports on September 11th, 2013.

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.