Researchers increase, decrease pain sensitivity using light

March 10, 2014 by Amy Adams

(Medical Xpress)—The mice in Scott Delp's lab, unlike their human counterparts, can get pain relief from the glow of a yellow light.

Right now these mice are helping scientists study —how and why it occurs, and why some people feel it so intensely without any obvious injury. But Delp, PhD, professor of and of mechanical engineering, hopes one day the work he does with these mice could also help people who are in chronic, debilitating pain.

"This is an entirely new approach to study a huge public health issue," Delp said. "It's a completely new tool that is now available to neuroscientists everywhere."

The mice are modified with gene therapy to have pain-sensing nerves that can be controlled by light. One color of light makes the mice more sensitive to pain. Another reduces pain. The light was shone on the paws of mice through the Plexiglas bottom of the cage.

The findings of the research were published online Feb. 16 in Nature Biotechnology. Delp was the senior author. The lead authors were graduate students Shrivats Iyer and Kate Montgomery. The researchers said the study opens the door to future experiments on the nature of pain, touch and other sensations that now are poorly understood.

"The fact that we can give a mouse an injection and two weeks later shine a light on its paw to change the way it senses pain is very powerful," Iyer said.

For example, increasing or decreasing the sensation of pain in these mice could help scientists understand why pain seems to continue in people after an injury has healed. Does persistent pain change those nerves in some way? And if so, how can they be changed back to a state in which, absent an injury, they stop sending pain messages to the brain?

Leaders at the National Institutes of Health agree that the work could have important implications for treating pain. "This powerful approach shows great potential for helping the millions who suffer pain from damage," said Linda Porter, the pain policy adviser at the National Institute of Neurological Disorders and Stroke and a leader of the NIH's Pain Consortium.

The researchers took advantage of a technique called optogenetics, which involves light-sensitive proteins called opsins that are inserted into the nerves. Optogenetics was developed by Delp's colleague Karl Deisseroth, MD, PhD, a co-author of the paper. He has used the technique as a way of activating precise regions of the rodent brain to better understand how the brain functions. Deisseroth is a professor of bioengineering and of psychiatry and behavioral sciences, as well as a Howard Hughes Medical Institute investigator.

Delp, who has an interest in muscles and movement, saw the potential for using optogenetics not just for studying the brain but also for studying the many nerves outside the brain. These are the nerves that control movement, pain, touch and other sensations throughout our body and that are involved in diseases like amyotrophic lateral sclerosis, also known as Lou Gehrig's disease.

A few years ago, Stanford's Bio-X program, which encourages interdisciplinary projects like this one, supported Delp and Deisseroth in their efforts to use optogenetics to control the nerves in mice that excite muscles. In the process of doing that work, Delp said, a student of his at the time, Michael Llewellyn, would occasionally find that he would place the opsins into nerves that signal pain rather than the ones that control muscle.

That accident sparked a new line of research. "We thought, wow, we're getting pain neurons—that could be really important," Delp said. He suggested that Montgomery and Iyer focus on those pain nerves that had been a byproduct of the muscle work.

A key component of the work was a new approach to quickly incorporate opsins into the nerves of . The team started with a virus that had been engineered to contain the DNA that produces the opsin. Then they injected those modified viruses directly into mouse nerves. Weeks later, only the nerves that control pain had incorporated the opsin proteins and would fire, or be less likely to fire, in response to different colors of light.

The speed of the viral approach makes it very flexible, both for this work and for future studies, the study's authors said. Researchers are developing newer forms of opsins with different properties. (Current opsins respond to light on the bluish end of spectrum, which doesn't penetrate very deeply into body tissues) "Because we used a viral approach, we could, in the future, quickly turn around and use newer opsins," said Montgomery, a Stanford Bio-X fellow.

This entire project, which spans bioengineering, neuroscience and psychiatry, could never have happened without the environment at Stanford that supports collaboration across departments, Delp said. The pain portion of the research came out of support from NeuroVentures, which was a project incubated within Bio-X to support the intersection of neuroscience and engineering or other disciplines. That project was so successful it has spun off into the Stanford Neurosciences Institute, of which Delp is now a deputy director.

Delp said there are many challenges to meet before new drugs and medical techniques that result from these experiments could become available to people, but that he always has that as a goal.

"Developing a new therapy from the ground up would be incredibly rewarding," he said. "Most people don't get to do that in their careers."

Explore further: Researchers turn pain perception on and off in mice using light

Related Stories

Researchers turn pain perception on and off in mice using light

February 18, 2014
(Medical Xpress)—A team of researchers at Stanford University has found a way to turn the perception of pain on and off using only a light source. In their paper published in the journal Nature Biotechnology, the team describes ...

Brain uses serotonin to perpetuate chronic pain signals in local nerves

January 23, 2014
Setting the stage for possible advances in pain treatment, researchers at The Johns Hopkins University and the University of Maryland report they have pinpointed two molecules involved in perpetuating chronic pain in mice. ...

New insight into pain mechanisms

April 25, 2012
(Medical Xpress) -- Researchers in the UCL Wolfson Institute for Biomedical Research have made a discovery which could help the development of analgesic drugs able to treat nerve damage-related pain.

Opioid abuse initiates specific protein interactions in neurons in brain's reward system

February 24, 2014
Identifying the specific pathways that promote opioid addiction, pain relief, and tolerance are crucial for developing more effective and less dangerous analgesics, as well as developing new treatments for addiction. Now, ...

Recommended for you

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.