Mountain climbing without the headaches caused by altitude

April 7, 2014

By monitoring blood flow in the brains of six climbers scaling Mount Kilimanjaro in Tanzania, German medical researchers have identified a possible way to prevent the headaches that are a common feature of altitude sickness. This work appears in the latest issue of JNIRSJournal of Near Infrared Spectroscopy.

Other features of altitude sickness include fatigue, digestive problems, weakness and dizziness. They are all caused by the decrease in the partial pressure of oxygen at altitudes above around 2500 m, as the number of oxygen molecules in a given volume drops. This produces an associated decrease in the concentration of oxygen in the blood and results in less oxygen reaching the brain. After a few days, most people naturally acclimatise and the symptoms of altitude sickness disappear.

Breathing patterns can also be affected by the fall in the partial pressure of oxygen at . This doesn't tend to be noticeable when awake, because consciously regulate their breathing. When sleeping at high altitudes, however, climbers tend to alternate between rapid, deep breathing (hyperventilation) and then much slower, shallower breathing (hypoventilation), sometimes briefly stopping breathing altogether (apnoea), with each cycle lasting for around 30 seconds. This is all down to how the body reacts to varying concentrations of oxygen and carbon dioxide (CO2) in the blood.

"The lack of oxygen at high altitude causes the climbers to hyperventilate, which leads to a decline of CO2 in the blood," explains Peter Stein, who is in the department of anesthesiology, and pain therapy at University Hospital Frankfurt. "The decline of CO2 leads to episodes of hypoventilation or even apnoea when the conscious breathing control subsides during sleep. As a consequence the oxygen level drops, causing an arousal and subsequent hyperventilation."

Stein and his colleagues wanted to discover whether this abnormal breathing pattern was reducing the supply of oxygen to the brain, potentially worsening the effects of altitude sickness. To find out, they turned to NIR spectroscopy, an analytical technique that detects specific molecules based on their absorption and reflection of light at near infrared wavelengths. Specifically, Stein and his colleagues wanted to use NIR spectroscopy to monitor changes in the concentration of haemoglobin, both oxygenated and deoxygenated, in the blood supply to the brain.

So they accompanied six climbers as they scaled Mount Kilimanjaro, the highest free-standing mountain in the world at 5895 m above sea level, attaching NIR electrodes to the climbers' foreheads while they slept to monitor haemoglobin concentrations. "The most challenging part was to transport not only the NIR spectroscope into basecamp but also all the equipment necessary to provide electricity," says Stein. "Therefore we bought a lightweight generator and enough fuel to provide power throughout all the nights."

What they discovered was that the abnormal breathing pattern caused periodic changes in the concentration of oxygenated haemoglobin and total haemoglobin, but not in the concentration of deoxygenated haemoglobin. This indicates that although the abnormal did alter the flow of blood into the climbers' brains, it didn't reduce the amount of reaching their brain tissue.

The researchers also discovered, however, that those climbers experiencing the most extreme periodic changes in haemoglobin concentrations in the brain as they slept were also those that suffered most from headaches at high altitudes. This suggests that one simple approach to preventing these headaches is to find ways to stop the abnormal breathing that occurs when sleeping at high altitudes.

"Our experiments reveal a pathomechanism contributing to the aetiology of the most common symptom of : headache," says Stein. "I hope that based on our findings it will be possible to develop new therapeutic approaches that help to increase comfort and safety for climbers in the future."

Explore further: High altitude climbers at risk for brain bleeds

More information: P. Stein, A. Lampe, A. Pape, K. Zacharowski, R. Hudek and C.F. Weber, "Sleeping on Mt Kilimanjaro—The influence of hypobaric hypoxia on brain perfusion and cerebral tissue oxygenation" J. Near Infrared Spectrosc. 22, 1 (2014) DOI: 10.1255/jnirs.1088

Related Stories

High altitude climbers at risk for brain bleeds

November 28, 2012
New magnetic resonance imaging (MRI) research shows that mountain climbers who experience a certain type of high altitude sickness have traces of bleeding in the brain years after the initial incident, according to a study ...

US scientists head to Mount Everest for research

April 20, 2012
(AP) -- A team of American scientists and researchers flew to the Mount Everest region on Friday to set up a laboratory at the base of the world's highest mountain to study the effects of high altitude on humans.

The physiologist who discovered the role of low blood oxygen at high altitude

August 9, 2013
Nowadays, it's well accepted that the cause for altitude sickness—the host of symptoms including headache, fatigue, digestive problems, dizziness, and sleep disorders that occurs when climbers ascend a tall peak too quickly—is ...

Study of Nepalese pilgrims challenges diagnosis of acute mountain sickness

January 9, 2014
A study led by University of British Columbia scientists calls into question a widely used method of diagnosing acute mountain sickness.

Recommended for you

Study finds walnuts may promote health by changing gut bacteria

July 28, 2017
Research led by Lauri Byerley, PhD, RD, Research Associate Professor of Physiology at LSU Health New Orleans School of Medicine, has found that walnuts in the diet change the makeup of bacteria in the gut, which suggests ...

Green tea ingredient may ameliorate memory impairment, brain insulin resistance, and obesity

July 28, 2017
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose ...

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.