A stable model for an unstable target

April 14, 2014, Rockefeller University
These schematic drawings show how researchers applied laser pulses to HCN channels tagged with a fluorescent photosensitizer to observe the effects on these channels of singlet oxygen, a highly reactive form of oxygen that plays a role in a range of biological processes including photosynthesis and skin cancer/aging. Credit: Gao et al., 2014

A study in The Journal of General Physiology provides new insights about singlet oxygen and sets the stage for better understanding of this highly reactive and challenging substance.

Singlet oxygen is an electronically excited state of oxygen that is less stable than normal oxygen. Its high reactivity has enabled its use in photodynamic therapy, in which light is used in combination with a photosensitizing drug to generate large amounts of singlet oxygen to kill cancer cells or various pathogens.

Light-generated singlet oxygen also plays a role in a range of biological processes. It is produced during photosynthesis in plants, for example, and its production in skin cells has been linked to aging and cancer development. Moreover, small amounts of singlet oxygen produced during metabolic reactions can act as a local signaling factor that oxidizes and modifies target molecules, but the underlying mechanisms are poorly understood.

Lei Zhou and colleagues from Virginia Commonwealth University unveil a new technique to show how singlet oxygen modifies HCN channels— "pacemaker channels" that contribute to memory, heart rate, pain sensation, and other functions. By applying millisecond laser light pulses to HCN channels tagged with a fluorescent photosensitizer, Zhou and colleagues were able to elicit the production of small amounts of singlet oxygen in a precise location and monitor its effects on the channels in open and closed states. Their results indicate that some of its effects on HCN channels are state specific and involve specific modifications near the activation gate.

The findings not only help explain how singlet oxygen functions, they introduce a method that can be used for further exploration of this important signaling factor.

Explore further: Biochips for better cancer therapy

More information: Gao, W., et al. 2014. J. Gen. Physiol. DOI: 10.1085/jgp.201311112

Related Stories

Biochips for better cancer therapy

February 25, 2014
Cancer is the second leading cause of disease-related death in the United States, and may overtake heart disease without aggressive new therapies. One promising area of cancer treatment is photodynamic therapy (PDT), which ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.