Molecule linked to aggressive pancreatic cancer offers potential clinical advances

May 21, 2014

Mayo Clinic researchers have discovered an enzyme they say is tightly linked to how aggressive pancreatic cancer will be in a patient.

They say the study, published in Molecular Cancer Research, provides key insights into the most aggressive form of the disease, which is one of the deadliest human cancers.

It also offers a number of possible future clinical advances, such as a way to gauge outcome in individual patients, and insight into potential therapy to shut down activity of the enzyme, known as Rac1b.

"The implication from our research is that Rac1b is activating unique pathways in that make this cancer aggressive. If we can therapeutically target that pathway, we may be able to have an impact on this very difficult-to-treat disease," says the study's senior investigator, Derek Radisky, Ph.D., a researcher with the Mayo Clinic Cancer Center in Jacksonville, Fla.

A potential drug target would have to be found within the cancer-causing pathways activated by Rac1b, since the enzyme is difficult to target because it is involved in many normal biological processes, Dr. Radisky says. He and his colleagues are now working to uncover how Rac1b ramps up pancreatic cancer progression.

The RAC1 superfamily of proteins—which play important regulatory roles in cell growth and cell movement—have been implicated in other cancers, such as melanoma and non-small cell lung cancer, but before this study, no one knew that one sub-form, Rac1b, played a role in pancreatic cancer.

The research team includes investigators from Mayo Clinic in Florida and Mayo Clinic SPORE in Pancreatic Cancer, one of three cancer centers in the U.S. to receive a Specialized Program of Research Excellence (SPORE) grant for pancreatic cancer from the National Cancer Institute. The Pancreatic Cancer SPORE is specifically committed to reducing the incidence and mortality of pancreatic cancer. The team began their research by investigating why pancreatic produce matrix metalloproteinases (MMPs), enzymes that break down the sticky adhesion molecules that keep cells glued together in a tissue, or in a tumor. MMPs allow cancer cells to migrate away from a tumor.

"Most MMPs are made by cells that surround and support a tumor, not by the tumor itself, as we see in pancreatic cancer," Dr. Radisky says.

Using a combination of human tissue biopsies, novel transgenic animal models and cell culture studies, the researchers established a link between expression of MMP3 and activation of Rac1b. Then, using Mayo Clinic's large panel of human pancreatic cancer biopsies, the scientists found that expression levels of Rac1b were significantly associated with the cancer's prognosis.

The researchers verified their findings by treating cultured cells with recombinant MMP3. They found this was sufficient to induce Rac1b and increased cancer invasiveness.

"Pancreatic cancer is not uniformly aggressive—some patients have a relatively better outcome. This work allows us to hone in on those patients who don't do as well, and who would most benefit from more targeted therapies," Dr. Radisky says.

Explore further: 'Achilles heel' of pancreatic cancer identified

Related Stories

'Achilles heel' of pancreatic cancer identified

May 1, 2014
A research team at Georgetown Lombardi Comprehensive Cancer Center reports that inhibiting a single protein completely shuts down growth of pancreatic cancer, a highly lethal disease with no effective therapy.

Bacteria in mouth may diagnose pancreatic cancer

May 18, 2014
Patients with pancreatic cancer have a different and distinct profile of specific bacteria in their saliva compared to healthy controls and even patients with other cancers or pancreatic diseases, according to research presented ...

Microfluidic technology reveals potential biomarker for early pancreatic cancer

April 29, 2014
Cancer cells are on the move in the bloodstream in the very early stage of pancreatic cancer, and can be detected before cancer is diagnosed, according to research by the University of Michigan Health System.

Novel drug cocktail may improve clinical treatment for pancreatic cancer

May 1, 2014
Pancreatic cancer is the fourth leading cause of cancer deaths in the U.S. and has the lowest overall survival rate of all major cancers (~6%). With current treatment options being met with limited success it is anticipated ...

Cell-surface receptor offers promising breakthrough for pancreatic cancer patients

April 3, 2014
Pancreatic cancer rates in the U.S. have been rising over the past decade, and the disease takes a very heavy toll. The American Cancer Society estimates that in the last year alone about 45,220 people were diagnosed with ...

Scientists find new molecule to target in pancreatic cancer treatment

January 3, 2013
Researchers at Mayo Clinic in Florida have identified a new target to improve treatment of pancreatic ductal adenocarcinoma cancer, which accounts for more than 95 percent of pancreatic cancer cases. This fast-growing, often ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.