Scientists provide insight into the pathology of Sanfilippo A syndrome

May 22, 2014, International Union of Crystallography
This is a monomer, with approximate locations of domains 1 and 2 shown. Credit: Sidhu et al.

Sanfilippo A syndrome or Mucopolysaccharidosis IIIA (MPS-IIIA) is a rare genetic lysosomal storage disease inherited from the parents of the patient. Lysosomes are the body's vehicle for breaking down many of its by-products such as proteins, nucleic acids, carbohydrates, lipids and cellular debris. The spherical vesicles are known to contain 50 different enzymes which are all active around an acidic environment of about pH 5.

Whilst each lysosomal disorder results from different gene mutations that translate into a deficiency in , they all share a common biochemical characteristic, which is when the enzyme sulfamidase is present in too small an amount or is missing completely in the cell. When this occurs, substances usually broken down by the cell as unwanted matter accumulate in the cell, leading to severe problems.

Affected children of the disease show developmental delay, behavioural abnormalities such as hyperactivity, and signs of neurodegeneration such as progressive loss of cognitive and motor functions, cerebral convulsions and spastic quadriplegia.

About 80% of the genetic alterations in sulfamidase represent replacement of single amino acids that result in functional inactive enzyme mutants. However the molecular understanding of the effects of these mutations has been confined by a lack of structural data for this enzyme.

A group of scientists from Germany and Spain have been successful in resolving the crystal structure of sulfamidase which provides convincing evidence for the molecular consequences of these amino acid replacements and is fundamental for the development of successful structure-based drug design for this devastating neurodegenerative disorder.

Key features for the successful development of novel therapeutic molecules comprise their specific activity to increase residual enzymatic activity of sulfamidase mutants and their ability to pass the blood brain barrier.

The knowledge of the structural features of sulfamidase will greatly facilitate the discovery of suitable compounds and drugs to assist in managing the disease and its debilitating effects.

Explore further: Gene therapy cures a severe paediatric neurodegenerative disease in animal models

More information: Sidhu et al, Acta Cryst. (2014), D70, 1321-1335 DOI: 10.1107/S1399004714002739

Related Stories

Gene therapy cures a severe paediatric neurodegenerative disease in animal models

July 2, 2013
A single session of a gene therapy developed by the Universitat Autonoma de Barcelona (UAB) cures Sanfilippo Syndrome A in animal models. This syndrome is a neurodegenerative disease that affects between 1 and 9 out of every ...

New therapy against rare gene defects

April 15, 2014
On 15th April is the 1st International Pompe Disease Day, a campaign to raise awareness of this rare but severe gene defect. Pompe Disease is only one of more than 40 metabolic disorders that mainly affect children under ...

Researchers report on promising new therapy for devastating genetic disorder

February 12, 2014
A promising new therapy has – for the first time – reduced damage to the brain that can be caused by Sanfilippo B (MPS IIIB), a rare and devastating genetic disease, Los Angeles Biomedical Research Institute (LA BioMed) ...

Genetic disorder causing strokes and vascular inflammation in children has been discovered

April 28, 2014
Academy research fellows from University of Turku (Finland), Andrey and Anton Zavialov, and a team of researches from the National Institutes of Health (NIH), USA, discovered that inherited mutations in a blood enzyme called ...

Two approaches to treat Lysosomal Storage Diseases

April 15, 2014
Enzyme therapy proves effective in treating LSDs, whilst gene therapy is an upcoming contender.

Potential drug target in sight for rare genetic disease

November 14, 2013
Medical researchers at the University of Alberta have discovered the structure of a potential drug target for a rare genetic disease, paving the way for an alternative treatment for the condition.

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.