A new brain-based marker of stress susceptibility

July 29, 2014, Duke University

Some people can handle stressful situations better than others, and it's not all in their genes: Even identical twins show differences in how they respond.

Researchers have identified a specific electrical pattern in the brains of genetically identical mice that predicts how well individual animals will fare in stressful situations.

The findings, published July 29 in Nature Communications, may eventually help researchers prevent potential consequences of chronic stress—such as , depression and other psychiatric disorders—in people who are prone to these problems.

"In soldiers, we have this dramatic, major stress exposure, and in some individuals it's leading to major issues, such as problems sleeping or being around other people," said senior author Kafui Dzirasa, M.D., Ph.D., an assistant professor of psychiatry and behavioral sciences at Duke University Medical Center and a member of the Duke Institute for Brain Sciences. "If we can find that common trigger or common pathway and tune it, we may be able to prevent the emergence of a range of mental illnesses down the line."

In the new study, Dzirasa's team analyzed the interaction between two interconnected brain areas that control fear and stress responses in both mice and men: the prefrontal cortex and the amygdala. The amygdala plays a role in the 'fight-or-flight' response. The prefrontal cortex is involved in planning and other higher-level functions. It suppresses the amygdala's reactivity to danger and helps people continue to function in stressful situations.

Implanting electrodes into the brains of the mice allowed the researchers to listen in on the tempo at which the prefrontal cortex and the amygdala were firing and how tightly the two areas were linked—with the ultimate goal of figuring whether the electrical pattern of cross talk could help decide how well animals would respond when faced with an acute stressor.

Indeed, in mice that had been subjected to a chronically stressful situation—daily exposure to an aggressive male mouse for about two weeks—the degree to which the prefrontal cortex seemed to control amygdala activity was related to how well the animals coped with the stress, the group found.

Next the group looked at how the brain reacted to the first instance of stress, before the mice were put in a chronically stressful situation. The mice more sensitive to showed greater activation of their -amygdala circuit, compared with resilient mice.

"We were really both surprised and excited to find that this signature was present in the animals before they were chronically stressed," Dzirasa said. "You can find this signature the very first time they were ever exposed to this aggressive dangerous experience."

Dzirasa hopes to use the signatures to come up with potential treatments for stress. "If we pair the signatures and treatments together, can we prevent symptoms from emerging, even when an animal is stressed? That's the first question," he said.

The group also hopes to delve further into the brain, to see whether the circuit-level patterns can interact with genetic variations that confer risk for psychiatric disorders such as schizophrenia. The new study will enable Dzirasa and other basic researchers to segregate stress-susceptible and resilient animals before they are subjected to stress and look at their molecular, cellular and systemic differences.

Explore further: Medial prefrontal cortex linked to fear response

More information: Nature Communications, July 29, 2014. DOI: 10.1038/ncomms5537

Related Stories

Medial prefrontal cortex linked to fear response

December 4, 2013
(Medical Xpress)—In a new paper published in the current issue of Neuron, Harvard Medical School researchers at McLean Hospital report that increased activity in the medial prefrontal cortex of the brain is linked to decreased ...

New evidence shows how chronic stress predisposes brain to mental disorders

February 11, 2014
(Medical Xpress)—University of California, Berkeley, researchers have shown that chronic stress generates long-term changes in the brain that may explain why people suffering chronic stress are prone to mental problems ...

Activation of a single neuron type can trigger eating

January 20, 2014
Activation of a single type of neuron in the prefrontal cortex can spur a mouse to eat more—a finding that may pinpoint an elusive mechanism the human brain uses to regulate food intake.

Study in mice raises question: Could PTSD involve immune response to stress?

February 20, 2014
Chronic stress that produces inflammation and anxiety in mice appears to prime their immune systems for a prolonged fight, causing the animals to have an excessive reaction to a single acute stressor weeks later, new research ...

Why do females respond better to stress? New study suggests it's because of estrogen in the brain

July 18, 2013
The idea that females are more resilient than males in responding to stress is a popular view, and now University at Buffalo researchers have found a scientific explanation. The paper describing their embargoed study will ...

Recommended for you

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.