A new brain-based marker of stress susceptibility

July 29, 2014, Duke University

Some people can handle stressful situations better than others, and it's not all in their genes: Even identical twins show differences in how they respond.

Researchers have identified a specific electrical pattern in the brains of genetically identical mice that predicts how well individual animals will fare in stressful situations.

The findings, published July 29 in Nature Communications, may eventually help researchers prevent potential consequences of chronic stress—such as , depression and other psychiatric disorders—in people who are prone to these problems.

"In soldiers, we have this dramatic, major stress exposure, and in some individuals it's leading to major issues, such as problems sleeping or being around other people," said senior author Kafui Dzirasa, M.D., Ph.D., an assistant professor of psychiatry and behavioral sciences at Duke University Medical Center and a member of the Duke Institute for Brain Sciences. "If we can find that common trigger or common pathway and tune it, we may be able to prevent the emergence of a range of mental illnesses down the line."

In the new study, Dzirasa's team analyzed the interaction between two interconnected brain areas that control fear and stress responses in both mice and men: the prefrontal cortex and the amygdala. The amygdala plays a role in the 'fight-or-flight' response. The prefrontal cortex is involved in planning and other higher-level functions. It suppresses the amygdala's reactivity to danger and helps people continue to function in stressful situations.

Implanting electrodes into the brains of the mice allowed the researchers to listen in on the tempo at which the prefrontal cortex and the amygdala were firing and how tightly the two areas were linked—with the ultimate goal of figuring whether the electrical pattern of cross talk could help decide how well animals would respond when faced with an acute stressor.

Indeed, in mice that had been subjected to a chronically stressful situation—daily exposure to an aggressive male mouse for about two weeks—the degree to which the prefrontal cortex seemed to control amygdala activity was related to how well the animals coped with the stress, the group found.

Next the group looked at how the brain reacted to the first instance of stress, before the mice were put in a chronically stressful situation. The mice more sensitive to showed greater activation of their -amygdala circuit, compared with resilient mice.

"We were really both surprised and excited to find that this signature was present in the animals before they were chronically stressed," Dzirasa said. "You can find this signature the very first time they were ever exposed to this aggressive dangerous experience."

Dzirasa hopes to use the signatures to come up with potential treatments for stress. "If we pair the signatures and treatments together, can we prevent symptoms from emerging, even when an animal is stressed? That's the first question," he said.

The group also hopes to delve further into the brain, to see whether the circuit-level patterns can interact with genetic variations that confer risk for psychiatric disorders such as schizophrenia. The new study will enable Dzirasa and other basic researchers to segregate stress-susceptible and resilient animals before they are subjected to stress and look at their molecular, cellular and systemic differences.

Explore further: Medial prefrontal cortex linked to fear response

More information: Nature Communications, July 29, 2014. DOI: 10.1038/ncomms5537

Related Stories

Medial prefrontal cortex linked to fear response

December 4, 2013
(Medical Xpress)—In a new paper published in the current issue of Neuron, Harvard Medical School researchers at McLean Hospital report that increased activity in the medial prefrontal cortex of the brain is linked to decreased ...

New evidence shows how chronic stress predisposes brain to mental disorders

February 11, 2014
(Medical Xpress)—University of California, Berkeley, researchers have shown that chronic stress generates long-term changes in the brain that may explain why people suffering chronic stress are prone to mental problems ...

Activation of a single neuron type can trigger eating

January 20, 2014
Activation of a single type of neuron in the prefrontal cortex can spur a mouse to eat more—a finding that may pinpoint an elusive mechanism the human brain uses to regulate food intake.

Study in mice raises question: Could PTSD involve immune response to stress?

February 20, 2014
Chronic stress that produces inflammation and anxiety in mice appears to prime their immune systems for a prolonged fight, causing the animals to have an excessive reaction to a single acute stressor weeks later, new research ...

Why do females respond better to stress? New study suggests it's because of estrogen in the brain

July 18, 2013
The idea that females are more resilient than males in responding to stress is a popular view, and now University at Buffalo researchers have found a scientific explanation. The paper describing their embargoed study will ...

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.