Researchers identify brain mechanism for motion detection in fruit flies

July 29, 2014 by James Devitt, New York University
Researchers identify brain mechanism for motion detection in fruit flies
A team of scientists has identified the neurons used in certain types of motion detection in fruit flies—findings that deepen our understanding of how the visual system functions. Credit: janeff/iStock

A team of scientists has identified the neurons used in certain types of motion detection—findings that deepen our understanding of how the visual system functions.

"Our results show how neurons in the brain work together as part of an intricate process used to detect motion," says Claude Desplan, a professor in NYU's Department of Biology and the study's senior author.

The study, whose authors included Rudy Behnia, an NYU post-doctoral fellow, as well as researchers from the NYU Center for Neural Science and Yale and Stanford universities, appears in the journal Nature.

The researchers sought to explain some of the neurological underpinnings of a long-established and influential model, the Hassenstein–Reichardt correlator. It posits that relies on separate input channels that are processed in the brain in ways that coordinate these distinct inputs. The Nature study focused on neurons acting in this processing.

The researchers examined the fruit fly Drosophila, which is commonly used in biological research as a model system to decipher basic principles that direct the functions of the brain.

Previously, scientists studying Drosophila have identified two parallel pathways that respond to either moving light, or dark edges—a dynamic that underscores much of what flies see in detecting motion. For instance, a bird is an object whose dark edges flies see as it first moves across the bright light of the sky; after it passes through their field of view, flies see the light edge of the background sky.

However, the nature of the underlying neurological processing had not been clear.

In their study, the researchers analyzed the neuronal activity of particular neurons used to detect these movements. Specifically, they found that four neurons in the brain's medulla implement two processing steps. Two neurons— Tm1 and Tm2—respond to brightness decrements (central to the detection of moving dark edges); by contrast, two other neurons— Mi1 and Tm3—respond to brightness increments (or light edges). Moreover, Tm1 responds slower than does Tm2 while Mi1 responds slower than does Tm3, a difference in kinetics that fundamental to the Hassenstein-Reichardt correlator.

In sum, these process the two inputs that precede the coordination outlined by the Hassenstein–Reichardt correlator, thereby revealing elements of the long-sought neural activity of motion detection in the fly.

Explore further: Researchers map complex motion-detection circuitry in flies

Related Stories

Researchers map complex motion-detection circuitry in flies

August 7, 2013
Some optical illusions look like they're in motion even though the picture is static. A new map of the fly brain also suggests motion—or at least how the fly sees movement. The new research, published in the August 8 issue ...

Neurobiologists discover elementary motion detectors in the fruit fly

August 7, 2013
Recognising movement and its direction is one of the first and most important processing steps in any visual system. By this way, nearby predators or prey can be detected and even one's own movements are controlled. More ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.