Defects in fatty acid transport proteins linked to schizophrenia and autism

July 15, 2014, RIKEN
autism
Quinn, an autistic boy, and the line of toys he made before falling asleep. Repeatedly stacking or lining up objects is a behavior commonly associated with autism. Credit: Wikipedia.

Using diverse methodologies, neuroscientists from the RIKEN Brain Science Institute report that defects in Fatty Acid Binding Proteins (FABPs) may help to explain the pathology in some cases of schizophrenia and autism spectrum disorders. After identifying mutations in FABPs from patients, the group led by Senior Team Leader Takeo Yoshikawa determined that the genetic disruption of Fabps in mice mimics disease behaviors seen in patients. This work suggests that disruption of FABPs could be a common link underlying some forms of these two prevalent mental disorders.

Published in the journal Human Molecular Genetics, the study reported that fatty acid binding proteins (FABPs), a component of lipid metabolism, are genetically linked to schizophrenia and (ASD) in humans and dysfunctional behaviors in . The findings provide support for the involvement of in the spectrum of cognitive disorders.

The brain is composed of lipids that provide structure and signaling functions, and disruption of lipid transport to or within the brain can lead to anomalous neurological symptoms. Previous studies revealed abnormally low levels of some (PUFAs) including essential fatty acids in schizophrenic and autistic but failed to identify the responsible proteins. Consequently, Yoshikawa and his team decided to investigate FABPs ? molecules that facilitate the transport of PUFAs and other fatty acids. "Our prior study showed that disruption of Fabp7 in mice impaired neurogenesis, so we suspected that FABP7 and its family members had important roles in neurodevelopment", said Dr. Yoshikawa. The researchers focused on the major FABPs found in mature neurons and neuronal progenitors, FABP3, FABP5, and FABP7, to better understand their potential roles in mental disabilities.

The team found that the expression levels of FABPs in postmortem brain and blood cells of patients were altered. Using molecular analysis, the team identified specific mutations in FABP genes exclusively in patients, which caused an abnormal structure or function of these proteins, presumably preventing them from delivering the correct fatty acids to their target tissues and organelles inside cells.

To investigate the effect of Fabp loss in the brain, the researchers genetically inactivated the genes in mice and conducted behavioral tests. They found that mice lacking Fabps exhibited behaviors similar to those observed in human patients. Fabp3 knock-out mice showed a decrease in memory and social motivation, mirroring dysfunctional cognition and lack of interest in social communication in ASD patients. In contrast, Fabp7 knock-out mice displayed hyperactivity and anxiety, a phenotype similar to that observed in schizophrenic patients. "Although the amino acid sequence of the FABPs is similar, we think that they interact with different and are expressed in different cells with distinct timing during development. This is likely the reason that the behaviors in the mice are different for each member of the Fabp family", said Dr. Yoshikawa.

Both and ASD are caused by many factors and conventional treatment does not work well on all patients. These findings suggest that FABPs may define one mechanism for these disorders selectively affecting lipid transport systems that may complement other etiological factors. "Identification of FABP mutations in humans may to help us take a personalized treatment approach," said Dr. Yoshikawa. "We hope our finding will lead to the development of tailor-made therapies, providing patients with molecules that complement deficiencies caused by their particular mutation."

Explore further: Study links APC gene to learning and autistic-like disabilities

Related Stories

Study links APC gene to learning and autistic-like disabilities

June 17, 2014
Autistic-like behaviors and decreased cognitive ability may be associated with disruption of the function of the Adenomatous Polyposis Coli (APC) gene. When Tufts researchers deleted the gene from select neurons in the developing ...

Omega 3 fatty acids lessen severity of osteoarthritis in mice

July 11, 2014
Mice consuming a supplement of omega 3 fatty acids had healthier joints than those fed diets high in saturated fats and omega 6 fatty acids, according to Duke Medicine researchers.

Omega-3 dietary supplements pass the blood-brain barrier

December 4, 2013
(Medical Xpress)—New research from Karolinska Institutet shows that omega-3 fatty acids in dietary supplements can cross the blood brain barrier in people with Alzheimer's disease, affecting known markers for both the disease ...

Three gene networks discovered in autism, may present treatment targets

June 6, 2014
A large new analysis of DNA from thousands of patients has uncovered several underlying gene networks with potentially important roles in autism. These networks may offer attractive targets for developing new autism drugs ...

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.