Researchers reveal treasure trove of genes key to kidney cancer

July 1, 2014
A new gene called sarcospan discovered in a common form of kidney cancer has been found to promote cell movement leading to invasion and metastasis. Cells silenced for sarcospan stick together like normal cells.

A genomic analysis of clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, from 72 patients has uncovered 31 genes that are key to development, growth and spread of the cancer, say researchers from Mayo Clinic in Florida. Eight of these genes had not been previously linked to kidney cancer, and six other genes were never known to be involved in any form of cancer.

Their study, in the journal Oncotarget, is the most extensive analysis to date of gene expression's role in ccRCC tumor growth and metastasis. The ccRCC subtype accounts for 80 percent of all kidney cancer cases.

This study is a thorough analysis, because overexpressed were functionally tested in kidney cancer cells to ensure they were important to some aspect of the cancer process, says the study's senior investigator, molecular biologist, John A. Copland, Ph.D.

"The power of this study is that we looked at genes discovered to be over-expressed in patients' tumors and determined their function in kidney cancer, which has not been done on a large scale before," he says. "This is a seminal step in identifying key pathways and molecules involved in kidney cancer so that specific therapies that target these new genes can be developed to treat this cancer."

This kidney cancer is one of the top 10 solid cancers in the U.S. Researchers expect 60,000 new cases to be diagnosed this year, with 13,000 deaths. While the prognosis for kidney cancer that has not spread is good, patients with advanced or metastatic cancer will develop drug resistance. Patients with untreated metastatic disease have a five-year overall survival rate of less than 10 percent.

The video will load shortly

The research team, which includes Mayo graduate student and lead author Christina von Roemeling, has already published several studies identifying some of the genes they discovered in the genetic analysis. In considering the importance of these discoveries to patients, they decided to publish all the genes at once in Oncotarget.

"We are releasing these discoveries to the scientific community so that a large effort can be mounted to find out more about these genes and how they can be effectively targeted," Dr. Copland says. "We owe patients speedy research that focuses on new treatments to save lives."

Targeted therapies used now to treat kidney cancer are often toxic, he adds.

"The study findings represent a very major advancement in therapeutic target identification for ccRCC and open new avenues for drug discovery and development. Novel therapeutic agents acting on these new targets should bring about a significant improvement in the prognosis of ccRCC patients," says co-author and Mayo oncologist Han Tun, M.D.

The researchers examined an equal number of samples (72) of normal kidney and kidney cancer tissues. They looked at over- and under-expression of RNA from the tissue, as well as protein production because genes express RNA to produce protein. They found almost 6,000 genes that fit that description. They isolated and tested 195 genes that are consistently elevated across patient samples. The researchers then narrowed the "hit" list to 31 after they tested each in living cancer cells to see if these genes contributed to either growth or spread of the tumor.

"We also found genes with other functions that are key to kidney cancer survival, such as inflammation. Another found gene is linked to angiogenesis, the production of new blood vessels to support a tumor. This is a novel discovery," says von Roemeling. "It is particularly important because ccRCC is well known for being a very angiogenic cancer.

"In addition to the potential of these genes and gene products to help us design new drugs, they could also serve as biomarkers for accurate diagnosis," she says. "It really is a treasure trove for future research on ."

Explore further: Gene in brain linked to kidney cancer

More information: Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration, www.impactjournals.com/oncotar … view&path%5B%5D=2097

Related Stories

Gene in brain linked to kidney cancer

June 24, 2014
A gene known to control brain growth and development is heavily involved in promoting clear cell renal cell carcinoma, the most common form of kidney cancer, researchers from Mayo Clinic in Florida are reporting.

Low cholesterol linked with worse survival in patients with kidney cancer

June 12, 2014
People are often told to reduce their cholesterol to improve their heart health, but new research suggests that low cholesterol may increase kidney cancer patients' risk of dying from their disease. The findings, which are ...

Study finds experimental drug inhibits growth in all stages of common kidney cancer

April 30, 2013
Researchers at Mayo Clinic's campus in Florida have discovered a protein that is overly active in every human sample of kidney cancer they examined. They also found that an experimental drug designed to block the protein's ...

Researchers develop process to help personalize treatment for lung cancer patients

June 3, 2014
Moffitt Cancer Center researchers, in collaboration with the Lung Cancer Mutation Consortium, have developed a process to analyze mutated genes in lung adenocarcinoma to help better select personalized treatment options for ...

Patients with a certain form of kidney disease may have a reduced risk of cancer

May 22, 2014
Patients with a certain form of kidney disease may have a reduced risk of cancer compared with patients with other kidney diseases, according to a study appearing in an upcoming issue of the Journal of the American Society ...

Recommended for you

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.