Further steps toward development of a vaccine against tick-transmitted disease

July 30, 2014 by Sathya Achia Abraham

Virginia Commonwealth University School of Medicine researchers have made an important advancement toward developing a vaccine against the debilitating and potentially deadly tick-transmitted disease, human granulocytic anaplasmosis (HGA).

During the past several years, experts have seen a steady rise in the incidence of human infections caused by tick-transmitted bacterial pathogens—making the need for a vaccine critical. Successful vaccine development hinges on knowing what to target to prevent disease, and the VCU team has identified three such proteins on the surface of the HGA agent.

HGA is caused by a bacterium called Anaplasma phagocytophilum. HGA is transmitted by the same ticks that transmit Lyme disease, and it is the second most-common tick-borne disease in the United States. Between 2003 and 2012, the number of cases reported to the Centers for Disease Control and Prevention increased more than sixfold. However, evidence indicates that many more cases go undocumented. The disease is also found in Europe and Asia and can affect dogs, cats, horses and sheep.

In a study, published in the August issue of the journal Cellular Microbiology, researchers report the discovery of a protein called A. phagocytophilum invasion protein A, or AipA, found on the surface of the bacterium. It is a key player in mammalian cell invasion. They identified the specific region of this protein that is necessary for infection.

Further, they discovered that AipA works together with two other previously identified A. phagocytophilum surface proteins, OmpA and Asp14, to enable the pathogen to optimally invade host cells.

"This is an important finding because it highlights that pathogens use cooperative, even redundant mechanisms to invade host cells," said lead investigator Jason A. Carlyon, Ph.D., associate professor and a George and Lavinia Blick Scholar in the Department of Microbiology and Immunologyin the VCU School of Medicine.

"Based on these findings, an effective preventative or therapeutic approach would be best achieved by targeting all three factors, rather than just one. Our research is a promising lead towards vaccine development against granulocytic anaplasmosisand is a blueprint for developing prophylactic and therapeutic approaches against pathogens that use multiple surface proteins to infect," he said.

"Furthermore, we have determined that humans and animals make antibodies against AipA, OmpA, and Asp14 during granulocytic anaplasmosis, which means they could be used to develop effective diagnostic tests for the disease."

Carlyon is working with Richard T. Marconi, Ph.D., professor of microbiology and immunology in the VCU School of Medicine, to translate these findings into a vaccine against granulocytic anaplasmosis. A patent application has been filed and the technology is available for licensure. For further information, contact VCU Innovation Gateway ott@vcu.edu.

This study builds on previously published work from the Carlyon lab. In 2012 and 2013, the team identified OmpA and Asp14, and determined that they worked together to promote A. phagocytophilum infection.

But, at that time, they also determined that a piece of the puzzle was missing.

"While using antibodies to target both did significantly reduce infection of host cells, the blocking was incomplete. This suggested to us the involvement of at least one additional Anaplasma protein, which, in this study, we identified as AipA," Carlyon said.

Next, the team will identify the key regions necessary for infection for , OmpA and Asp14, and then validate whether targeting the regions of all three proteins prevents infection using a mouse model. According to Carlyon, the information could be used to develop a "trifecta vaccine" to target the relevant regions of the three proteins, and thereby provide effective protection against infection.

The findings are highlighted as the Editor's Choice in the August print issue of the journal Cellular Microbiology.

Explore further: Researchers uncover molecular basis of infection of tick-transmitted disease

More information: Seidman, D., Ojogun, N., Walker, N. J., Mastronunzio, J., Kahlon, A., Hebert, K. S., Karandashova, S., Miller, D. P., Tegels, B. K., Marconi, R. T., Fikrig, E., Borjesson, D. L. and Carlyon, J. A. (2014), "Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells." Cellular Microbiology, 16: 1133–1145. doi: 10.1111/cmi.12286

Related Stories

Researchers uncover molecular basis of infection of tick-transmitted disease

October 12, 2012
Virginia Commonwealth University School of Medicine researchers have identified the "keys" and "doors" of a bacterium responsible for a series of tick-transmitted diseases. These findings may point researchers toward the ...

Single tick bite can pack double pathogen punch

June 20, 2014
People who get bitten by a blacklegged tick have a higher-than-expected chance of being exposed to more than one pathogen at the same time.

Researchers identify extent of new tick-borne infection

May 9, 2014
(Medical Xpress)—The frequency of a new tick-borne infection that shares many similarities with Lyme disease, and a description of the antibody test used to test individuals for evidence of the infection, have been reported ...

Recommended for you

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.