Revolutionary handheld DNA diagnostic unit allows lab-quality analysis in the field

August 26, 2014
A revolutionary handheld and battery-powered DNA diagnostic device invented at the University of Otago is poised to become a commonly used field tool for rapidly detecting suspected viruses or bacteria in samples while also determining the level of infection. Credit: Sharron Bennett

A revolutionary handheld and battery-powered DNA diagnostic device invented at New Zealand's University of Otago is poised to become a commonly used field tool for rapidly detecting suspected viruses or bacteria in samples while also determining the level of infection.

The breakthrough device, dubbed Freedom4, is being unveiled today at the Queenstown Molecular Biology main meeting. It takes advantage of a technology called quantitative PCR to identify target DNA sequences in real-time, without the need for further processing.

As an example, using Freedom4, the presence and extent of norovirus infection in a sample could be confirmed within less than an hour, while the person using the unit was still at the outbreak site.

Dr Jo-Ann Stanton, who led the programme to develop the device, says that as well as enabling 'anytime, anywhere' clinical diagnosis of viral infectious diseases in humans and animals, it also has many other potential uses, such as border security, forensics or environmental monitoring.

Developed by Dr Stanton's multidisciplinary team at Otago's Department of Anatomy, the sturdy unit weighs the same as a typical laptop and fits on the palm of your hand. Freedom4 boasts a six-hour battery life and can be tethered to a laptop, or connect wirelessly to smart phones or tablets running custom software that analyses and interprets the test results.

"This mobility could provide a great boon for farmers. For instance, vets could drive around a farm analysing samples from various locations, make their diagnoses and treat infected animals—all in one trip," she says.

A prototype of the device has been independently put through its paces by the New Zealand Institute of Environmental and Scientific Research.

After running assays for toxin-producing E. coli, and several gastrointestinal and respiratory viruses—including H1N1—Freedom4 was found to perform on a par with much larger laboratory-based DNA analysis systems.

Dr Stanton says she and her team are delighted that their six-year project to make a handheld point-of-care diagnostic device a reality has come to fruition.

"We are immensely proud that we have created this brilliant device; there is currently no other system in the world that compares in terms of the analytical power we have achieved at this level of mobility and ease of use."

Dr Stanton's team includes a physicist, computer programmer, a chemist and biologists. Their project was funded through a New Economy Research Fund (NERF) grant, from what is now New Zealand's Ministry of Business, Innovation and Employment. NERF objectives include supporting investigator-initiated basic research that has the potential to create the advanced technological platforms that will underpin new and emerging industries.

The University's commercialization arm, Otago Innovation, is now working to spin out the technology in partnership with a New Zealand company named Ubiquitome.

Otago Innovation's Senior Commercialization Manager David Christensen says that Freedom4's development exemplifies university research being successfully translated into real-world technology with enormous potential health, economic and environmental benefits.

"Dr Stanton and her colleagues have used their combined multidisciplinary expertise to overcome a number of daunting technical challenges to create a molecular that is truly world-leading," Mr Christensen says.

It is another great example of technology transfer from the University of Otago, he says.

"We are delighted to be a part of Ubiquitome as it works to realize its dream of connecting the world to meaningful genomic information through handheld, cloud-connected genetic analysis devices."

Explore further: Hybrid technology could make Star Trek-style tricorder a reality

Related Stories

Hybrid technology could make Star Trek-style tricorder a reality

April 8, 2014
Scientists at the University of Southampton are aiming to develop a handheld testing device to provide same day diagnosis from a patient's bedside.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.