The striatum acts as hub for multisensory integration

August 22, 2014, Karolinska Institutet
Gilad Silberberg & Ramon Reig, Karolinska Institutet

A new study from Karolinska Institutet in Sweden provides insight on how the brain processes external input such as touch, vision or sound from different sources and sides of the body, in order to select and generate adequate movements. The findings, which are presented in the journal Neuron, show that the striatum acts as a sensory 'hub' integrating various types of sensory information, with specialised functional roles for the different neuron types.

"The is the main input structure in the , and is typically associated with motor function", says Principal Investigator Gilad Silberberg at the Department of Neuroscience. "Our study focuses on its role in processing sensory input. This is important knowledge, since the striatum is implicated in numerous diseases and disorders, including Parkinson's disease, Huntington's disease, ADHD and Tourette syndrome."

The striatum is the largest structure in a collection of brain nuclei called the basal ganglia, which are located at the base of the forebrain. It is involved in motor learning, planning and execution as well as selecting our actions out of all possible choices, based on the expected reward by the dopamine system. Most research performed in the striatum is focused on the motor aspects of its function, largely due to the devastating motor symptoms of the related diseases.

However, in order to select the correct actions, and generate proper motor activity it is essential to continuously process , often arriving from different sources, different sides of the body and from different sensory modalities, such as tactile (touch), visual, auditory, and olfactory. This integration of sensory information is in fact a fundamental function of our nervous system.

In the current study, researchers Gilad Silberberg and Ramon Reig show that individual striatal neurons integrate sensory input from both sides of the body, and that a subpopulation of these neurons process sensory input from different modalities; touch, light and vision. The team used intracellular patch-clamp recordings from single neurons in the mouse striatum to show their responses to whisker stimulation from both sides as well as responses to visual stimulation. Neurons responding to both visual and tactile stimuli were located in a specific medial region of the striatum.

"We also showed that neurons of different types integrate in a different manner, suggesting that they have specific roles in the processing of such sensory information in the striatal network", says Gilad Silberberg.

The work was funded by an ERC starting grant to Gilad Silberberg, and grants from the Knut and Alice Wallenberg Foundation, the Karolinska Institutet Strategic Research program in Neuroscience (StratNeuro), and the Swedish Research Council.

Explore further: Interplay of rhythms makes brain centers communicate

More information: "Multisensory Integration in the Mouse Striatum", Ramon Reig and Gilad Silberberg, Neuron online 21 August 2014, DOI: 10.1016/j.neuron.2014.07.033

Related Stories

Interplay of rhythms makes brain centers communicate

April 25, 2014
Tübingen neuroscientists say differing rhythms coordinate the neural activity governing movement.

Positive feedback in the developing brain

May 16, 2012
(Medical Xpress) -- When an animal is born, its early experiences help map out the still-forming connections in its brain. As neurons in sensory areas of the brain fire in response to sights, smells, and sounds, synapses ...

Our brain has switch board to guide behavior in response to external stimuli

February 14, 2014
How do our brains combine information from the external world (sensory stimulation) with information on our internal state such as hunger, fear or stress? NERF scientists demonstrate that the habenula, a specific part in ...

One neuron has huge impact on brain behaviour

November 15, 2012
(Medical Xpress)—Researchers from Australia and the USA have made a unique discovery about how the brain computes sensory information.

Map of brain connections provides insight into olfactory system

May 16, 2014
The processing of sensory information in the brain involves a complex network of neural connections specific to each type of sensory input. Much is known about the neural wiring associated with most senses, but the deeper ...

Study details brain pathways linking visual function, running

July 16, 2014
A new study by researchers at the University of Oregon published today in the journal Neuron describes a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.