Photoelectric dye-coupled thin film as a novel type of retinal prosthesis

September 30, 2014, Okayama University
Figure 1. Photoelectric dye-coupled polyethylene film (OUReP): a novel type of retinal prosthesis.

Eye doctor Dr. Toshihiko Matsuo and polymer science engineer Dr. Tetsuya Uchida have been developing a new type of retinal prosthesis that is based on a photoelectric dye. The photoelectric dye is an organic molecule that absorbs light and converts light energy into electric potentials. The dye molecules are coupled to the surface of a film made of polyethylene. The polyethylene film (or polymer) is a biologically safe and stable material which is used, for example, as a component of artificial joints. The photoelectric dye-coupled polyethylene film, called Okayama University-type retinal prosthesis or OUReP, can be implanted beneath the retina as a substitute for photoreceptor cells.

The photoreceptor cells in the retina absorb light and generate membrane potential changes as an initial process in sight. Patients with a hereditary disease called retinitis pigmentosa, gradually lose the photoreceptor cells in their lifetime and become totally blind. These vision-impaired patients are known to maintain other that connect to the brain. Thus, the implantation of something artificial called retinal prosthesis to replace the lost , would lead to the recovery of vision in blind patients.

A prevailing type of retinal prosthesis is the so-called "camera-image-capture and electrode-array output system". The image is captured by a digital video camera attached to glasses, and converted to electric signals. These signals are transmitted to a receiver implanted in the body, and finally, electric currents are outputted from an electrode array that is implanted around the degenerated retina. In 2013, Argus II Retinal Prosthesis System, by Second Sight, Inc., which uses this camera-capture and electrode-array system, was approved by the US Food and Drug Administration (FDA).

Okayama University-type —OUReP—would provide the following advantages over the Argus II Retinal Prosthesis System. First of all, OUReP does not require a camera or data processing system, or wiring to the retina. A single sheet of OUReP would be implanted into the subretinal space by currently-used standard vitreous surgery, just as to treat retinal detachment. A large size of the thin film, up to 10 mm in diameter, could be implanted in the eye, which would provide a wide visual field. Dye molecules in high density on the polyethylene surface work as both an image (light)-receiver and a neuron-stimulator, leading to high resolution of images. In contrast, the Argus II System with 60 electrodes provides low resolution of images.

Figure 2. Manufacturing process of photoelectric dye-coupled polyethylene film (OUReP): a novel type of retinal prosthesis.

The biological safety of OUReP has been already proven by standardized tests, based on ISO 10993, "Biological evaluation of ". In addition, the photoelectric dye, used for OUReP, has no toxicity at all. Rats with , called RCS rats, had their vision restored by subretinal implantation of OUReP. Manufacturing and quality control has been established at the laboratory of Polymer Materials Science in a Faculty-of-Engineering Building. Dr. Matsuo and Dr. Uchida are now preparing a first-in-human clinical trial at Okayama University Hospital, in consultation with Pharmaceuticals and Medical Devices Agency (PMDA, counterpart of US FDA), based on the Pharmaceutical Affairs (Pharmaceuticals and Medical Devices) Act in Japan.

Figure 3. Fast on-off response to light of electric potentials on the surface of photoelectric dye-coupled polyethylene film (OUReP): a novel type of retinal prosthesis.

Figure 4. Schematic drawing of vitreous surgery to implant a sheet of photoelectric dye-coupled polyethylene film (OUReP) , a novel type of retinal prosthesis, beneath the retina.

Explore further: New device offers hope to people blinded due to incurable eye disorders

More information: Matsuo T, Uchida T, Takarabe K. Safety, efficacy, and quality control of a photoelectric dye-based retinal prosthesis (Okayama University-type retinal prosthesis) as a medical device. J Artif Organs 2009;12:213-225.

Alamusi, Matsuo T, Hosoya O, Tsutsui MK, Uchida T. Behavior tests and immunohistochemical retinal response analyses in RCS rats with subretinal implantation of Okayama University-type retinal prosthesis. J Artif Organs 2013;16 :343-351.

Related Stories

New device offers hope to people blinded due to incurable eye disorders

November 17, 2013
Research presented at the 117th Annual Meeting of the American Academy of Ophthalmology shows promising data about a device that helps people who have lost their vision due to a blinding genetic disease to recognize common ...

Eye implants make vision-restoring progress

July 18, 2012
(Medical Xpress) -- "I was blind once but now I can see.” The words are no longer the sole property of religious testimony and literature. Medical progress is being made in the restoration of vision as evidenced by Second ...

Bionic eye gives hope to the blind

February 5, 2013
After years of research, the first bionic eye has seen the light of day in the United States, giving hope to the blind around the world.

Making artificial vision look more natural

June 5, 2014
In laboratory tests, researchers have used electrical stimulation of retinal cells to produce the same patterns of activity that occur when the retina sees a moving object. Although more work remains, this is a step toward ...

Recommended for you

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

Blood biomarker can help predict disease progression in patients with COPD

July 12, 2018
Some patients with COPD demonstrate signs of accelerated aging. In a new study published in the journal CHEST researchers report that measuring blood telomeres, a marker of aging of cells, can be used to predict future risk ...

Rogue molecules provoke out-of-control scar tissue, strangle organs

July 12, 2018
Normal scar tissue forms to heal an internal wound and quietly retreats when the job is done. But in many common diseases—kidney, liver and lung fibrosis—the scar tissue goes rogue and strangles vital organs. These diseases ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.