'Superhero' microbiome bacteria protect against deadly symptoms during infection

October 29, 2015, Salk Institute
Salk scientists find a strain of E. coli bacteria (left) that were able to stop muscle wasting in mice infected with either Salmonella Typhimurium (center) and Burkholderia thailandensis (right). Credit: Salk Institute

As concerns over deadly antibiotic-resistant strains of 'superbug' bacteria grow, scientists at the Salk Institute are offering a possible solution to the problem: 'superhero' bacteria that live in the gut and move to other parts of the body to alleviate life-threatening side effects caused by infections.

In a paper published October 30, 2015 in Science, the Salk researchers reported finding a strain of micro biome Escherichia coli bacteria in mice capable of improving the animals' tolerance to infections of the lungs and intestines by preventing wasting—a common and potentially deadly loss of muscle tissue that occurs in serious infections. If a similarly protective strain is found in humans, it could offer a new avenue for countering muscle wasting, a common and deadly result of patients suffering from sepsis and hospital-acquired infections, many of which are now antibiotic resistant.

"Treatments for infection have long focused on eradicating the offending microbe, but what actually kills people aren't the bacteria themselves—it's the collateral damage it does to the body," says Janelle Ayres, a Salk assistant professor in the Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis and senior researcher on the study.

"Our findings suggest that preventing the damage—in this case muscle wasting—can stave off the most life-threatening aspects of an infection," she adds. "And by not trying the kill the pathogen, you're not encouraging the evolution of the deadly antibiotic-resistant strains that are killing people around the world. We might be able to fight superbugs with 'superhero' bugs."

Once the most powerful and revolutionary of drugs, antibiotics appear to have reached their limits, due to the ability of bacteria to rapidly evolve resistance to the medicines. The rise of antibiotic resistance presents a grave threat to people around the world, as diseases once easily controlled repel all attempts at treatment. A recent study found that up to half of the bacteria that cause infections in US hospitals after a surgery are resistant to standard antibiotics.

In the United States alone, two million people annually become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections, according to the U.S. Centers for Disease Control.

"Antibiotics were a huge step for medicine, but that model of killing bacteria with drugs clearly has its weaknesses," says Alexandria Palaferri Schiebe, a research associate in Ayres' lab and co-first author on the new paper. "Most researchers are looking for new antibiotics, but this fuels the arms race between doctors and bacteria. Focusing on disease tolerance—preventing harm done by the disease—instead of microbial eradication is a new paradigm of therapy for infectious diseases."

In hopes of finding new methods to counter infections, Ayres' team turned to the microbiome, the community of microbes living—typically harmoniously—within our bodies. In the human body, microbes outnumber cells by 10 to 1 and make up as much as 3 percent of body weight. Despite this, relatively little is know about how these tiny passengers interact with our development, metabolism and immune system.

Ayers began studying disease tolerance as a graduate student, hypothesizing that the gut microbiome might contain bacteria that could protect against damage caused by infections. "There is a lot of evidence to support this idea, but until now no one had identified such a strain or shown the mechanism by which a bacterium would provide disease tolerance," says Ayres.

Salk researchers Michelle Lee, Alexandria Palaferri Schieber and Janelle Ayres, assistant professor. Credit: Salk Institute

The Salk team identified a population of laboratory mice that appeared resistant to muscle wasting. By comparing the makeup of the intestinal microbiome of these mice with mice that lacked resistance, the team identified a strain of E. coli that was present only in the wasting-resistant mice. When normal mice were given an oral treatment of this beneficial E. coli strain, they gained the ability to maintain their muscle and fat mass during of the bacteria Salmonella Typhimurium and pneumonia caused by the bacteria Burkholderia thailandensis.

The next step was to find out how the bacteria were conferring this tolerance to the mice. Collaborating with the laboratory of Salk Professor Ronald Evans, Ayres' team discovered that during an infection by the pathological bacteria, the E. coli left the gut and moved into the fat tissues to induce protective responses that nourish the muscles.

Normally, mice with lung and intestinal infections see a drop in a hormone known as insulin-like growth factor 1 (IGF-1), a molecule that signals the body to retain muscle mass. But the protective E. coli activated the IGF-1 pathway in the fat tissues, maintaining normal IGF-1 levels and maintaining the animal's muscle in spite of the pathogenic infections.

The Salk team further found that the E. coli strain was activating the IGF-1 muscle maintenance pathway through an intermediary, a molecular complex in cells known as the inflammasome. Part of the body's innate immune system, the inflammasome responds to an by triggering inflammation in the infected area to destroy the offending microbes. The E. coli used this same alarm system to tell the body to maintain IGF-1 levels and hence muscle mass.

Whether such a microbial 'superhero' could come to the rescue of humans with infections remains to be seen. Ayres' team is currently studying how long the E. coli strain can hold off the pathogens and whether the body's immune system will eventually eradicate the harmful completely. They are also beginning to examine whether such a microbe exists in humans.

"There's a lot we still need to understand, but this is a very promising sign that microbes might be used as medicine," Ayres says. "It may offer an entirely new avenue for treatment of infections, even those that are antibiotic resistant, while also preventing the rise of new resistant strains."

Explore further: Bacteria shown to suppress their antibiotic-resistant cousins

More information: "Disease tolerance mediated by microbiome E. coli via inflammasome and IGF-1 signaling," by A.M. Palaferri Schieber et al. www.sciencemag.org/lookup/doi/ … 1126/science.aac6468

Related Stories

Bacteria shown to suppress their antibiotic-resistant cousins

May 12, 2015
Researchers studying a dangerous type of bacteria have discovered that the bacteria have the ability to block both their own growth and the growth of their antibiotic-resistant mutants. The discovery might lead to better ...

Drug-resistant E. coli continues to climb in community health settings

October 13, 2015
Drug-resistant E. coli infections are on the rise in community hospitals, where more than half of U.S. patients receive their health care, according to a new study from Duke Medicine.

Researchers develop novel theoretical approach to reduce antibiotic resistance

October 9, 2015
It is estimated that each year in the United States 2 million people become infected with bacteria that are resistant to one or more types of antibiotics, and at least 23,000 people will die because of these infections. This ...

Recommended for you

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.