Less effective antimalarial therapies can help fight malaria better

November 12, 2015, Oxford University
Credit: CDC

Oxford University scientists have found that the more effective way to beat malaria is to use less effective drugs some of the time.

The current drug of choice for malaria - artemisinin - is extremely effective at saving lives from the disease, but artemisinin-resistant malaria parasites are spreading as the drug is used more and more. A computer simulation study now suggests that treating malaria in a population by simultaneously using a non-artemisinin therapy amongst more effective artemisinin-based combinations is the best way to combat the , while still reducing the spread of drug-resistant malaria. Writing in the Lancet Global Health, scientists at the Nuffield Department of Clinical Medicine at Oxford University found that this combination worked best even when the non-artemisinin drug was only effective 85% of the time in treating malaria.

Currently, to stop the spread of artemisinin-resistant parasites, the World Health Organization (WHO) encourages the use of the drug in combination with other anti-malarials; the would have to become simultaneously resistant to both the drugs in order to survive this two-hit artemisinin combination therapy.

However, malaria parasites in South-East Asia have begun to acquire characteristics to help evade even this double hit, and these resistant strains are likely to spread over the next decade as the use of artemisinin combination therapies becomes more widespread.

Health policy makers are therefore in bind, having to decide whether to safeguard artemisinin effectiveness (by avoiding its overuse), or to encourage the use of artemisinin wherever possible to save people's lives.

Professor Maciej Boni and his colleagues ran computer simulations to find out if there was an optimal strategy that could stop the spread of parasites across populations, while still effectively treating malaria in individual patients. They found that simultaneously dosing a population with several artemisinin-combination therapies - say, by prescribing artemisinin in combination with different partner drugs on different days of the week - was more effective than either cycling between different artemisinin combination therapies, or by sticking to one specific combination until the combination started failing.

The simulation also found that if this simultaneous dosing also included a combination without artemisinin, malaria parasites that were resistant to artemisinin were slower to emerge, and slower to spread. Including this potentially less effective treatment option didn't necessarily mean that many more people would not recover from malaria: in the worst case scenario of the non-artemisinin treatment being only 75% as effective as artemisinin combination therapy, fewer than 7% of malaria patients would still have post-treatment malaria parasites in their blood as a result of not being prescribed an artemisinin drug.

Professor Boni said, 'For this subgroup of patients, second-line treatment with an artemisinin combination therapy would be recommended. The ethical implications of such a treatment policy will need to weighed against the benefit of delaying and slowing down the spread of artemisinin resistance.

'But the nightmare we all want to avoid is the establishment of artemisinin resistance in Africa, where hundreds of millions of individuals rely on artemisinin-based therapies as their first-line antimalarial treatment. By deploying different antimalarial therapies simultaneously - including non-artemisinin-based therapies - national malaria control programs in Africa should be able to slow down the spread of artemisinin-resistant parasites when they are imported into the continent.'

Explore further: Drug-resistant malaria could spread to Africa: study

More information: Tran Dang Nguyen et al. Optimum population-level use of artemisinin combination therapies: a modelling study, The Lancet Global Health (2015). DOI: 10.1016/S2214-109X(15)00162-X

Related Stories

Drug-resistant malaria could spread to Africa: study

October 20, 2015
A drug-resistant malaria parasite from southeast Asia can infect African mosquitoes, said a study Tuesday, boosting fears that a hard-to-cure variant of the disease could reach the world's most vulnerable continent.

Factfile on Nobel anti-malaria drug artemisin

October 6, 2015
Today's frontline drug to fight malaria, artemisinin has a history going back many centuries, for it traces its past to ancient Chinese medicine.

Global health team pioneers development of a new antimalarial drug screening model

November 11, 2015
A University of South Florida Center for Global Health & Infectious Diseases Research team has demonstrated a new screening model to classify antimalarial drugs and to identify drug targets for the most lethal strain of malaria, ...

No single cut-off for parasite half-life can define artemisinin-resistant malaria

April 28, 2015
Data from southeast Asia—where artemisinin-resistant malaria strains were first detected—broadly support WHO's 'working definition' for artemisinin resistance, but the currently used definitions require important refinements, ...

Researchers identify genetic marker of resistance to key malaria drug

December 18, 2013
An international team of researchers has discovered a way to identify, at a molecular level, malaria-causing Plasmodium falciparum parasites that are resistant to artemisinin, the key drug for treating this disease. The research ...

Malaria: Multi-drug resistance more alarming than ever

September 21, 2015
The efforts of the international community for the past ten years in the fight against malaria have reduced the number of disease-related deaths. The emerging resistance to standard therapies threatening South-East Asia, ...

Recommended for you

Tibetan sheep highly susceptible to human plague, originates from marmots

August 16, 2018
In the Qinghai-Tibet plateau, one of the region's highest risk areas for human plague, Himalayan marmots are the primary carriers of the infectious bacterium Y. pestis. Y. pestis infection can be transmitted to humans and ...

Autoimmunity plays role in development of COPD, study finds

August 16, 2018
Autoimmunity plays a role in the development of chronic obstructive pulmonary disease (COPD), according to a study led by Georgia State University and Vanderbilt University Medical Center that analyzed human genome information ...

Reliable point-of-care blood test can help prevent toxoplasmosis

August 16, 2018
A recent study, performed in Chicago and Rabat, Morocco, found that a novel finger-prick test for infection with the parasite Toxoplasma gondii during pregnancy—and many other potential applications—is 100 percent sensitive ...

Scientists identify nearly 200 potential tuberculosis drug targets

August 16, 2018
Tuberculosis is one of the top 10 causes of death worldwide. Nearly 2 million people die every year from this infectious disease, and an estimated 2 billion people are chronically infected. The only vaccine, developed almost ...

First mouse model to mimic lung disease could speed discovery of more effective treatments

August 16, 2018
The biggest hurdle to finding effective therapies for idiopathic pulmonary fibrosis (IPF) – a life-threatening condition in which the lungs become scarred and breathing is increasingly difficult – has been the inability ...

Anticancer drug offers potential alternative to transplant for patients with liver failure

August 15, 2018
Patients suffering sudden liver failure could in the future benefit from a new treatment that could reduce the need for transplants, research published today shows.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.