Blocking inflammation prevents cell death, improves memory in Alzheimer's disease

February 29, 2016
A brain tissue sample from Kim Green’s study show microglia (red) and plaques (green). Credit: Green lab / UCI 

Using a drug compound created to treat cancer, University of California, Irvine neurobiologists have disarmed the brain's response to the distinctive beta-amyloid plaques that are the hallmark of Alzheimer's disease.

Kim Green and colleagues with UCI's Institute for Memory Impairments and Neurological Disorders found that flushing away the abundant inflammatory cells produced in reaction to beta-amyloid plaques restored in test mice. Their study showed that these cells, called microglia, contribute to the neuronal and seen in this neurodegenerative disease. Results appear in the journal Brain.

"Our findings demonstrate the critical role that inflammation plays in Alzheimer's-related memory and cognitive losses," said Green, an assistant professor of neurobiology & behavior. "While we were successful in removing the elevated microglia resulting from beta-amyloid, further research is required to better understand the link among beta-amyloid, inflammation and neurodegeneration in Alzheimer's."

The neurobiologists treated Alzheimer's disease model mice with a small-molecule inhibitor compound called pexidartinib, or PLX3397, which is currently being used in several phase 2 oncology studies and a phase 3 clinical trial to treat a benign neoplasm of the joints.

The inhibitor works by selectively blocking signaling of microglial surface receptors, known as colony-stimulating factor 1 receptors, which are necessary for microglial survival and proliferation in response to various stimuli, including beta-amyloid. This led to a dramatic reduction of these inflammatory cells, allowing for analysis of their role in Alzheimer's. The researchers noted a lack of neuron death and improved memory and cognition in the pexidartinib-treated mice, along with renewed growth of dendritic spines that enable brain neurons to communicate.

Green said that although the compound swept away microglia, the beta-amyloid remained, raising new questions about the part these plaques play in Alzheimer's neurodegenerative process.

In healthy tissue, microglia act as the first and main form of immune defense in the central nervous system. But in a disease state, such as Alzheimer's, microglia appear to turn against the healthy tissue they were originally assigned to protect, causing inflammation in the brain. The beta-amyloid plaques in brain areas related to Alzheimer's disease are rich with these rogue microglia, Green added.

"Our work is telling us that these cells may contribute to the disease process, and targeting them with such specific drugs is a promising new approach," he said.

Explore further: Body's immune system may play larger role in Alzheimer's disease than thought

More information: "Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology," Brain (2016). DOI: 10.1093/brain/aww016

Related Stories

Body's immune system may play larger role in Alzheimer's disease than thought

February 23, 2016
Immune cells that normally help us fight off bacterial and viral infections may play a far greater role in Alzheimer's disease than originally thought, according to University of California, Irvine neurobiologists with the ...

Brain's immune system could be harnessed to fight Alzheimer's

November 4, 2015
A new study appearing in the Journal of Neuroinflammation suggests that the brain's immune system could potentially be harnessed to help clear the amyloid plaques that are a hallmark of Alzheimer's disease.

Hyperactive neurons may be culprit in Alzheimer's

January 13, 2016
A long-term reduction in neuronal activity reduces amyloid plaques associated with Alzheimer's disease, Yale University researchers have found. The study, using mouse models of Alzheimer's, found the opposite is also true—triggering ...

Immune cells are an ally, not enemy, in battle against Alzheimer's

January 29, 2015
Beta-amyloid is a sticky protein that aggregates and forms small plaques in the brains of the elderly and is thought to be a cause of Alzheimer's disease. Because specialized immune cells always surround these plaques, many ...

Study shows beneficial effects of blocking brain inflammation in experimental model of Alzheimer's

January 7, 2016
A University of Southampton-led study has found that blocking a receptor in the brain responsible for regulating immune cells could protect against the memory and behaviour changes seen in the progression of Alzheimer's disease.

New findings on the brain's immune cells during Alzheimer's disease progression

April 11, 2013
The plaque deposits in the brain of Alzheimer's patients are surrounded by the brain's own immune cells, the microglia. This was already recognized by Alois Alzheimer more than one hundred years ago. But until today it still ...

Recommended for you

Alzheimer's Tau protein forms toxic complexes with cell membranes

November 22, 2017
The brains of patients with Alzheimer's disease contain characteristic tangles inside neurons. These tangles are formed when a protein called Tau aggregates into twisted fibrils. As a result, the neurons' transport systems ...

Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017
In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that ...

Dementia study sheds light on how damage spreads through brain

November 20, 2017
Insights into how a key chemical disrupts brain cells in a common type of dementia have been revealed by scientists.

Researchers describe new biology of Alzheimer's disease

November 20, 2017
In a new study, researchers from Boston University School of Medicine (BUSM) describe a unique model for the biology of Alzheimer's disease (AD) which may lead to an entirely novel approach for treating the disease. The findings ...

Study shows video games could cut dementia risk in seniors

November 16, 2017
Could playing video games help keep the brain agile as we age?

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.