Blocking inflammation prevents cell death, improves memory in Alzheimer's disease

February 29, 2016, University of California, Irvine
A brain tissue sample from Kim Green’s study show microglia (red) and plaques (green). Credit: Green lab / UCI 

Using a drug compound created to treat cancer, University of California, Irvine neurobiologists have disarmed the brain's response to the distinctive beta-amyloid plaques that are the hallmark of Alzheimer's disease.

Kim Green and colleagues with UCI's Institute for Memory Impairments and Neurological Disorders found that flushing away the abundant inflammatory cells produced in reaction to beta-amyloid plaques restored in test mice. Their study showed that these cells, called microglia, contribute to the neuronal and seen in this neurodegenerative disease. Results appear in the journal Brain.

"Our findings demonstrate the critical role that inflammation plays in Alzheimer's-related memory and cognitive losses," said Green, an assistant professor of neurobiology & behavior. "While we were successful in removing the elevated microglia resulting from beta-amyloid, further research is required to better understand the link among beta-amyloid, inflammation and neurodegeneration in Alzheimer's."

The neurobiologists treated Alzheimer's disease model mice with a small-molecule inhibitor compound called pexidartinib, or PLX3397, which is currently being used in several phase 2 oncology studies and a phase 3 clinical trial to treat a benign neoplasm of the joints.

The inhibitor works by selectively blocking signaling of microglial surface receptors, known as colony-stimulating factor 1 receptors, which are necessary for microglial survival and proliferation in response to various stimuli, including beta-amyloid. This led to a dramatic reduction of these inflammatory cells, allowing for analysis of their role in Alzheimer's. The researchers noted a lack of neuron death and improved memory and cognition in the pexidartinib-treated mice, along with renewed growth of dendritic spines that enable brain neurons to communicate.

Green said that although the compound swept away microglia, the beta-amyloid remained, raising new questions about the part these plaques play in Alzheimer's neurodegenerative process.

In healthy tissue, microglia act as the first and main form of immune defense in the central nervous system. But in a disease state, such as Alzheimer's, microglia appear to turn against the healthy tissue they were originally assigned to protect, causing inflammation in the brain. The beta-amyloid plaques in brain areas related to Alzheimer's disease are rich with these rogue microglia, Green added.

"Our work is telling us that these cells may contribute to the disease process, and targeting them with such specific drugs is a promising new approach," he said.

Explore further: Body's immune system may play larger role in Alzheimer's disease than thought

More information: "Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology," Brain (2016). DOI: 10.1093/brain/aww016

Related Stories

Body's immune system may play larger role in Alzheimer's disease than thought

February 23, 2016
Immune cells that normally help us fight off bacterial and viral infections may play a far greater role in Alzheimer's disease than originally thought, according to University of California, Irvine neurobiologists with the ...

Brain's immune system could be harnessed to fight Alzheimer's

November 4, 2015
A new study appearing in the Journal of Neuroinflammation suggests that the brain's immune system could potentially be harnessed to help clear the amyloid plaques that are a hallmark of Alzheimer's disease.

Hyperactive neurons may be culprit in Alzheimer's

January 13, 2016
A long-term reduction in neuronal activity reduces amyloid plaques associated with Alzheimer's disease, Yale University researchers have found. The study, using mouse models of Alzheimer's, found the opposite is also true—triggering ...

Immune cells are an ally, not enemy, in battle against Alzheimer's

January 29, 2015
Beta-amyloid is a sticky protein that aggregates and forms small plaques in the brains of the elderly and is thought to be a cause of Alzheimer's disease. Because specialized immune cells always surround these plaques, many ...

Study shows beneficial effects of blocking brain inflammation in experimental model of Alzheimer's

January 7, 2016
A University of Southampton-led study has found that blocking a receptor in the brain responsible for regulating immune cells could protect against the memory and behaviour changes seen in the progression of Alzheimer's disease.

New findings on the brain's immune cells during Alzheimer's disease progression

April 11, 2013
The plaque deposits in the brain of Alzheimer's patients are surrounded by the brain's own immune cells, the microglia. This was already recognized by Alois Alzheimer more than one hundred years ago. But until today it still ...

Recommended for you

Not being aware of memory problems predicts onset of Alzheimer's disease

February 15, 2018
Doctors who work with individuals at risk of developing dementia have long suspected that patients who do not realize they experience memory problems are at greater risk of seeing their condition worsen in a short time frame, ...

Poor fitness linked to weaker brain fiber, higher dementia risk

February 14, 2018
Scientists have more evidence that exercise improves brain health and could be a lifesaving ingredient that prevents Alzheimer's disease.

Compound prevents neurological damage, shows cognitive benefits in mouse model of Alzheimer's disease

February 7, 2018
The supplement nicotinamide riboside (NR) – a form of vitamin B3 – prevented neurological damage and improved cognitive and physical function in a new mouse model of Alzheimer's disease. The results of the study, conducted ...

Positive attitudes about aging reduce risk of dementia in older adults

February 7, 2018
Research has shown that older persons who have acquired positive beliefs about old age from their surrounding culture are less likely to develop dementia. This protective effect was found for all participants, as well as ...

One in five older adults experience brain network weakening following knee replacement surgery

February 7, 2018
A new University of Florida study finds that 23 percent of adults age 60 and older who underwent a total knee replacement experienced a decline in activity in at least one region of the brain responsible for specific cognitive ...

Redefined Alzheimer's biology has implications for drug design

February 7, 2018
Despite the 25-year focus on the build-up in brain tissues of one protein, amyloid beta, as the purported origin of Alzheimer's disease (AD), a new study argues that it is likely triggered instead by the failure of a system ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.