Genetics reveals the impact of lifestyle on evolution

April 4, 2016
The Khoisan, ethnic groups in Southern Africa, traditionally live as a hunterers and gatherers.

Scientists have long thought that the rate with which mutations occur in the genome does not depend on cultural factors. The results of a current study suggest this may not be the case. A team of researchers from France and Germany analysed more than 500 sequences of the male Y-chromosome in southern African ethnic groups living as farmers and in population groups engaged in traditional hunter-gatherer activities. The study found that the agriculturalists had a comparatively higher rate of change than the hunter-gatherers did. The researchers explain this by the significantly older average age of paternity among the agriculturalists. Furthermore, the study finds a much older age for the most recent common ancestor of the human Y-chromosome than was previously assumed.

By sequencing stretches of the Y-chromosome of 500 African males, scientists have been able to show for the first time that the chromosome, which is inherited only in the paternal line, changes at different speeds in different . The researchers compared, on the one hand, members of the Khoisan ethnic groups who traditionally live as hunter-gatherers and, on the other hand, speakers of a Bantu language living in Botswana, Namibia and Zambia who have long worked as farmers.

Interestingly, the different mutation rates can be explained by cultural differences between the two population groups: men from farming societies tend to have children for a longer period of time, leading to an older average of fathers and a higher mutation rate than is typical for men from foraging societies.

"On average, paternal age in southern African foraging societies is 36 years, and 46 years in southern African agriculturalist societies", explains Chiara Barbieri, scientist at the Max Planck Institute for the Science of Human History and one of the lead authors of the study. "A 15-year increase in age of paternity results in a 50% increase of mutations – so these differences in lifestyle can have a huge impact on the rate of change of the Y-chromosome."

Farmers often marry twice

Brigitte Pakendorf, scientist at the laboratoire Dynamique Du Langage in Lyon who coordinated the study added: "Farming societies often allow men to marry more than one wife, so that men often have children at a relatively advanced age with a younger woman. This is one of the factors behind this difference in paternal age and the resulting difference in mutation rate."

The study also reveals a much older age than was previously thought for the most recent common ancestor of the human Y-chromosome. Whereas previous studies estimated an age of approximately 140,000 years, the current investigation estimates an age of 180,000 to 200,000 years. "Previous analyses studied mainly Eurasian individuals in their dating efforts and so missed much of the genetic variation found in southern African populations", said co-author Mark Stoneking, professor at the Max Planck Institute for Evolutionary Anthropology. "Overall, our results demonstrate the importance of expanding genetic studies to non-Eurasian populations."

Explore further: New analysis of human genetic history reveals female dominance

More information: Refining the Y chromosome phylogeny with southern African sequences Human Genetics (April 2016) doi: dx.doi.org/10.1101/034983

Related Stories

New analysis of human genetic history reveals female dominance

September 23, 2014
Female populations have been larger than male populations throughout human history, according to research published today in the open access journal Investigative Genetics. The research used a new technique to obtain higher ...

Recommended for you

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Scientists first to use genetic engineering technique to investigate Tourette's

September 25, 2017
Scientists at Rutgers University-New Brunswick are the first to use a genetic engineering technique to create brain cells from the blood cells of individuals in a three-generation family with Tourette syndrome to help determine ...

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.