Study analyses how epigenetics regulate vital functions from bacteria to humans

August 4, 2016, Boston University Medical Center

After the emergence of single-celled organisms some billions of years ago, nature started experimenting with how to diversify gene function without changing the sequence of the DNA, such that the blue print remains conserved, but allows gene products to have different functions. As multicellular organisms evolved, this process of maintenance and function were provided by mechanisms which are called "epigenetics". Epigenetics allow genes to function differently by adding chemical 'tags' to DNA or to proteins that surround the DNA. Recent studies suggest that in more developed eukaryotes the changes in the protein that help DNA fold regulate how much chemical 'tag' will be attached to DNA and vice versa.

A new study published by Boston University School of Medicine researchers in the journal of Genetics and Epigenetics, provides a comparative analysis of the evolution of epigenetic mechanisms from prokaryotes (bacteria) to simple eukaryotes (multi-cellular) to more complex eukaryotes (humans). Bacteria evolved billions of years ago, and even at that early stage, nature started the process of allowing bacterial DNA to perform different functions without changing the order by which DNA is organized. This was achieved by adding a chemical 'tag' to one of the subunits of DNA. The group of atoms that gets attached can vary based on the organism. This simple modification is important for bacterial survival, and allows bacteria to fight infections. It is striking though that the attachment site of the 'tag' shifted to a different subunit on DNA as eukaryotes developed. Viruses also learned how to use this "tagging" process to their advantage. The virus HIV, which causes AIDs, hides from an individual's immune system by removing a particular 'tag' from the proteins that fold DNA.

According to corresponding author Sibaji Sarkar, PhD, instructor of medicine at BUSM, it is intriguing to observe how nature shifted the site of 'tag' addition from bacteria to mammals. "The addition of 'tagging' proteins that are involved in folding DNA in eukaryotes provided another dimension," he explains.

He adds, "If we closely observe the process of regeneration in some eukaryotes including zebra fish, when a portion is cut out, it is clear that the present gene pool in the DNA provides the necessary healing process to regenerate the section of the organism. We may gain tremendous knowledge to understand how stem cells can become so many types of organs by studying this process." It appears that regulate this process. The most striking event which describes this type of multifaceted formation of organs and tissues from one cell (fertilized egg) is embryogenesis.

When mammals reproduce, the DNA sequences that are inherited cannot be altered, but from the time that the sperm fertilizes the egg, every step proceeds according to a set of rules until the tissues and organs are differentiated. Different sets of genes are used for each step of development. For example, the 'tags' in the egg are erased after fertilization and then rewritten. The proteins that rewrite this process are governed by the same proteins that fold the DNA in the mother's egg. It is reasonable, therefore, to believe that the characteristics of mom's folding proteins may dictate which type of 'tag' will take place in her offspring DNA. It is known that the epigenetic alterations of 'tagging' are regulated by environmental effects. The authors suggest that environmental factors and the mother's lifestyle will thus affect 'tagging' of the offspring DNA, which will dictate how the offspring genes will be utilized. Interestingly, epigenetic changes also take place throughout life depending on the life style of the person.

This article includes the description of altered epigenetic changes which may lead to many types of diseases including metabolic syndrome, cardiovascular disease, autoimmune diseases, neurological disorders, aging and cancer.

The authors proposed another hypothesis which could explain how increase copy numbers of tumor promoting genes and decrease or delete tumor inhibiting genes. Sarkar added, "Cancer cells possibly hijack a mechanism operative in normal cells which provides way how the methyl tagged DNA will be untagged by cutting the DNA at the site of tag and repairing it. It is an interesting idea which needs to be tested."

The epigenetic process of 'tagging' that is utilized by living organisms from bacteria to humans is a gold mine for understanding the normal functions of cells and determining where, when, and how these steps deviate from normal behavior to cause disease conditions, a which is still not well understood.

Explore further: Altered primary chromatin structures and their implications in cancer development

Related Stories

Altered primary chromatin structures and their implications in cancer development

April 26, 2016
Cancer development is a complex process involving both genetic and epigenetic changes. Genetic changes in oncogenes and tumor-suppressor genes are generally considered as primary causes, since these genes may directly regulate ...

Researchers identify efficient methylating enzyme for cancer development

January 23, 2015
A recent study may help begin to explain how cancer develops though the abnormal turning on and off of genes. Researchers have discovered that the increase of methyl tags in cancer cells is due to highly efficient DNA methyl ...

Researchers report possible discovery of sixth DNA base, methyl-adenine

May 5, 2015
DNA (deoxyribonucleic acid) is the main component of our genetic material. It is formed by combining four parts: adenine, cytosine, guanine and thymine (A, C, G and T), called bases of DNA. They combine in thousands of possible ...

Missing link in epigenetics could explain conundrum of disease inheritance

July 7, 2016
The process by which a mother's diet during pregnancy can permanently affect her offspring's attributes, such as weight, could be strongly influenced by genetic variation in an unexpected part of the genome, according to ...

Recommended for you

Progress in genetic testing of embryos stokes fears of designer babies

November 16, 2018
Recent announcements by two biotechnology companies have stoked fears that designer babies could soon be an option for those who can afford to pick and choose which features they want for their offspring. The companies, MyOme ...

Gene editing possible for kidney disease

November 16, 2018
For the first time scientists have identified how to halt kidney disease in a life-limiting genetic condition, which may pave the way for personalised treatment in the future.

DICE: Immune cell atlas goes live

November 15, 2018
Compare any two people's DNA and you will find millions of points where their genetic codes differ. Now, scientists at La Jolla Institute for Immunology (LJI) are sharing a trove of data that will be critical for deciphering ...

Ashkenazi Jewish founder mutation identified for Leigh Syndrome

November 15, 2018
Over 30 years ago, Marsha and Allen Barnett lost their sons to a puzzling childhood disease that relentlessly attacked their nervous systems and sapped their energy. After five-year-old Chuckie died suddenly in 1981, doctors ...

Drug candidate may recover vocal abilities lost to ADNP syndrome

November 15, 2018
Activity-dependent neuroprotective protein syndrome (ADNP syndrome) is a rare genetic condition that causes developmental delays, intellectual disability and autism spectrum disorder symptoms in thousands of children worldwide. ...

The puzzle of a mutated gene lurking behind many Parkinson's cases

November 15, 2018
Genetic mutations affecting a single gene play an outsized role in Parkinson's disease. The mutations are generally responsible for the mass die-off of a set of dopamine-secreting, or dopaminergic, nerve cells in the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.