Synthetic 3D-printed material helps bones regrow

September 28, 2016
Cross-section of an adult human femur 3-D printed using an ink developed at Northwestern University. Credit: Adam E. Jakus, Northwestern University

A cheap and easy to make synthetic bone material has been shown to stimulate new bone growth when implanted in the spines of rats and a monkey's skull, researchers said Wednesday.

Human trials using the biomaterial, called Hyper-Elastic Bone (HB), could begin in the next five years, according to the research team from Northwestern University.

"We knew this material had great mechanical properties and it was very easy and rapid to 3D print," said study author Adam Jakus, a researcher at Northwestern University, during a conference call with reporters.

"Its biological effects in the outcomes we observed directly were quite astounding."

The material is "made mostly of a ceramic, which contains mineral found in teeth and bones, and polymer, both of which are used in the clinic," said the study in Science Translational Medicine.

Unlike , which are more costly, more brittle and risk being rejected in the patient's body, the biomaterial could be printed into many shapes and cut, folded, and sutured to fit on demand, according to the report.

"When implanted into experimental animals, HB quickly integrated with the surrounding tissue, regenerating bone to promote spinal fusion in rats," said the study.

A larger piece was printed to fill a hole in a 's skull. It healed after four weeks, with no signs of infection or other side effects, and researchers were able to see evidence of new bone growth.

"This work represents what could be the next breakthrough in orthopedic, cranial facial and pediatric surgery when it comes to repairing and regenerating bone in bone to soft tissue defects," said study author Ramille Shah, assistant professor at Northwestern University.

Researchers hope the material will one day offer personalized implants for a range of bone injuries, including spine, dental, reconstructive, and bone cancer surgeries.

"There's a lot of pediatric patients who are born, especially in Third World countries, with orthopedic or maxillofacial defects," said Shah.

"And we hope that because the Hyper-Elastic Bone is scalable and at a lower cost, that it would be accessible to those types of patients."

Explore further: Team uses 3-D tissue engineering to revolutionize dental disease

More information: A. E. Jakus et al. Hyperelastic "bone": A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial, Science Translational Medicine (2016). DOI: 10.1126/scitranslmed.aaf7704 ,

Related Stories

Team uses 3-D tissue engineering to revolutionize dental disease

March 30, 2016
The discomfort and stigma of loose or missing teeth could be a thing of the past as Griffith University researchers pioneer the use of 3D bioprinting to replace missing teeth and bone.

Recommended for you

Switch discovered to convert blood vessels to blood stem cells in embryonic development

March 20, 2018
A switch has been discovered that instructs blood vessel cells to become blood stem cells during embryonic development in mice. Using single-cell technology, researchers from the Wellcome Sanger Institute in Cambridge and ...

Scientists discover new causes of cellular decline in prematurely aging kids

March 19, 2018
In a recent paper published in Cell Reports, Saint Louis University researchers have uncovered new answers about why cells rapidly age in children with a rare and fatal disease. The data points to cellular replication stress ...

Don't blame adolescent social behavior on hormones

March 19, 2018
Reproductive hormones that develop during puberty are not responsible for changes in social behavior that occur during adolescence, according to the results of a newly published study by a University at Buffalo researcher.

Stem cells treat macular degeneration

March 19, 2018
In July 2015, 86-year-old Douglas Waters developed severe age-related macular degeneration (AMD). He struggled to see things clearly, even when up close.

Measuring neutrophil motility could lead to accurate sepsis diagnosis

March 19, 2018
A microfluidic device developed by Massachusetts General Hospital (MGH) investigators may help solve a significant and persistent challenge in medicine—diagnosing the life-threatening complication of sepsis. In their paper ...

Democratizing science: Researchers make neuroscience experiments easier to share, reproduce

March 16, 2018
Over the past few years, scientists have faced a problem: They often cannot reproduce the results of experiments done by themselves or their peers.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.