Study uncovers new molecular signaling mechanism for correcting childhood visual disorders

September 16, 2016, University of California, Irvine

Neuroscientists at University of California, Irvine have discovered a molecular signaling mechanism that translates visual impairments into functional changes in brain circuit connections. The discovery may help to develop novel therapeutic drugs to treat the childhood visual disorder amblyopia and other neurodevelopment disorders. Xiangmin Xu, Todd Holmes and Sunil Gandhi conducted the study, which appears online Sept. 15 in Neuron.

Amblyopia is the most common cause of permanent visual defects among children and is often a result of improper brain development due to deprivation during the "critical period" of vision development. In a previous study, Xu helped discover that a specific class of (parvalbumin-expressing , or PV neurons) control the critical period of vision development. In this study, Xu and colleagues found that neuregulin-1 (NRG1) molecules modulate the activities of these neurons, thus outlining a new path for treatments that can restore normal in children who have had early deficits.

As neurodevelopmental disorders such as schizophrenia appear to result from brain developmental defects during defined postnatal windows, the linkage of NRG1 signaling to critical growth periods provides important new insights. Xu said he hopes that therapeutic interventions targeting NRG1 may be exploited to treat cortical neurodevelopmental disorders.

Explore further: Neurobiologists restore youthful vigor to adult brains

More information: Yanjun Sun et al. Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity, Neuron (2016). DOI: 10.1016/j.neuron.2016.08.033

Related Stories

Neurobiologists restore youthful vigor to adult brains

May 18, 2015
They say you can't teach an old dog new tricks. The same can be said of the adult brain. Its connections are hard to change, while in children, novel experiences rapidly mold new connections during critical periods of brain ...

Breakthrough in understanding of brain development: Immune cell involvement revealed

August 25, 2016
Microglia are cells that combat various brain diseases and injuries by swallowing foreign or disruptive objects and releasing molecules that activate repair mechanisms. Recent findings have suggested these brain cells are ...

Re-learning how to see: Researchers find a crucial on-off switch in visual development

August 1, 2013
A discovery by a University of Maryland-led research team offers hope for treating "lazy eye" and other serious visual problems that are usually permanent unless they are corrected in early childhood.

Receptors in brain linked to schizophrenia, autism

August 11, 2015
The loss of a critical receptor in a special class of inhibitory neurons in the brain may be responsible for neurodevelopmental disorders including autism and schizophrenia, according to new research by Salk scientists.

Study of genetic microcephaly in mice may reveal insights into Zika-based microcephaly

September 12, 2016
Microcephaly is a rare disorder that stunts brain development in utero, resulting in an abnormally small head. The Zika virus is one environmental cause of this devastating condition, but genetic defects can cause microcephaly, ...

Recommended for you

Classifying brain microglia: Which are good and which are bad?

December 6, 2018
Microglia are known to be important to brain function. The immune cells have been found to protect the brain from injury and infection and are critical during brain development, helping circuits wire properly. They also seem ...

Drawing is better than writing for memory retention

December 6, 2018
Older adults who take up drawing could enhance their memory, according to a new study.

Friend or foe? Brain area that controls social memory also triggers aggression

December 5, 2018
Columbia scientists have identified a brain region that helps tell an animal when to attack an intruder and when to accept it into its home. This brain area, called CA2, is part of the hippocampus, a larger brain structure ...

How the brain hears and fears

December 5, 2018
How is it that a sound can send a chill down your spine? By observing individual brain cells of mice, scientists at Cold Spring Harbor Laboratory (CSHL) are understanding how a sound can incite fear.

Adding new channels to the brain remote control

December 5, 2018
By enabling super-fast remote control of specific cells, light-activated proteins allow researchers to study the function of individual neurons within a large network—even an entire brain. Now one of the pioneers of 'optogenetics' ...

Microbial-based treatment reverses autism spectrum social deficits in mouse models

December 4, 2018
An unconventional approach has successfully reversed deficits in social behaviors associated with autism spectrum disorders (ASD) in genetic, environmental and idiopathic mouse models of the condition. Researchers at Baylor ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.