If we were like mice we could live to 400 – but we're not, so we don't

October 12, 2016 by Christopher Turbill, The Conversation
Mice can slow the wheel of ageing almost at will. Humans, not so much. Credit: Ron and Joe/Shutterstock.com

You may have seen the news that the human lifespan cannot be extended beyond about 115 years, as shown by a demographic analysis confirming that the steady improvements in lifespan seen for many populations over recent decades has stalled since the 1990s.

The researchers' conclusion that "the maximum lifespan of humans is fixed and subject to natural constraints" is sobering reading for those who dream that human ageing can one day be successfully hacked. But for evolutionary ecologists, it should not come as a surprise.

As well as striking a note of biological realism, this research also highlights how research on human ageing often neglects the insights available from evolutionary theory – and particularly from a research field called "comparative life-history ecology".

This genre of research explains why mice and humans grow old at such different rates (more on why this is a problem for ageing research later). It aims to bring us closer to understanding the "ultimate" reasons why we age – which in turn can tell us whether the hundreds of millions of dollars poured into ageing research are actually a good investment.

Strive as we might, an evolutionary perspective tells us that maximum lifespans will not be extended by simply solving one symptom of ageing after another.

Growing old – the 'why' as well as the 'how'

Ageing – or "senescence", to use the biological term – is defined as a decline in physiological condition with age. You might wonder why allows this to happen at all. The answer is that senescence happens in a "selection shadow" – that is, after organisms have already reproduced and passed on their genes. There is no real evolutionary penalty for failing to ward off the ravages of old age, because in animal populations relatively few individuals make it into their geriatric years anyway, thanks to predators, disease, hardship or bad luck.

Natural selection reaches a crescendo at sexual maturity, when most individuals in a population are alive and striving to produce viable offspring. This is the age at which the genetic baton is passed to the next generation. Unfortunately for those of us over 40, it's all downhill from here in terms of the evolutionary pressure to maintain a healthy body.

This knowledge – that selection pressure changes with age in a way that depends not just on the expected lifespan but also on the timing of reproductive effort – is fundamental to evolutionary theories of ageing. It is also fundamental to how we design and interpret the research that aims to help us prolong our own maximum lifespans.

For mice, having babies really can age you faster. Credit: ShwSie/Wikimedia Commons, CC BY

Many of the species most frequently studied by biologists – such as mice, flies and worms – are chosen precisely because their short lifespans and fast generational turnover make them quicker and easier to work with. But their short lives and adaptable reproductive strategies actually make them unsuitable models for testing drugs or other anti-ageing interventions aimed at slowing human ageing.

Short-lived species seem to be able to "trade in" their investment in growth and sexual reproduction in return for slowing down the switching to a physiological state in which they instead invest in maintenance of body condition and warding off senescence.

This strategy makes sense for species whose brief lives can be subject to wide variability in environmental conditions. For a small rodent, having a litter of pups would be rather pointless if food is too scarce for them to grow and survive to adulthood. Hamsters, for example, can instead enter a torpid state that actually protects their cells from ageing over winter.

In contrast, species with long expected natural lifespans (which have reduced their mortality risk by evolving to a large size, or being able to fly or hibernate, or having a large brain) have already invested strongly, and perhaps maximally, in protecting their cells from ageing. This suggests there is no "anti-ageing switch" available to flick for a species such as ourselves. Whether or not we have children, it seems we're already naturally geared to live as long as we possibly can.

This might sound weird, but it's supported by a simple comparative analysis that a colleague and I published back in 2010, in which we compared the average expected lifespan with the maximum recorded lifespan for various mammals. From this we can calculate a simple ratio of average to maximum lifespan, which tells you, for a given species, how much it is theoretically possible to expand lifespan.

If we take the ratio of a short-lived species like a mouse and apply it to humans, we would predict a maximum lifespan of about 400 years! But despite all of our efforts to push the boundaries through medicine and nutrition, humans (along with elephants and other highly durable animals) don't come close to these biblical lifespans.

So if mice find it much easier to slow down the ageing process than we do, what does that mean for anti-ageing studies using mice? Sadly, the implication is that most tactics shown to prolong lifespan in mice – such as calorie restriction – will be far less effective in humans.

If we are to break the evolutionary constraints on maximum lifespan in humans, we need to better take account of life-history ecology. This theory tells us that the causes of ageing are to be found not at the end of our lives, but at the beginning.

How our maximum lifespan is ultimately limited will be understood by research that seeks to answer why the pace of life varies so much among different animals. For me, this is the take-home message from this recent excellent research.

Explore further: Fruit flies live longer on lithium

Related Stories

Fruit flies live longer on lithium

April 7, 2016
Fruit flies live 16% longer than average when given low doses of the mood stabiliser lithium, according to a UCL-led study.

New research shows sensitivity to oxidative stress is not always linked to aging

May 11, 2016
A study published in the US journal, Aging by the University of Surrey and University of Rochester has made an important breakthrough in understanding the impact of oxygen exposure on the aging process of mammal cells. The ...

Anti-ageing hormone receptors

August 7, 2013
(Medical Xpress)—A reduced caloric intake increases life expectancy in many species. But how diet prolongs the lives of model organisms such as fruit flies and roundworms has remained a mystery until recently.

Recommended for you

BPA can induce multigenerational effects on ability to communicate

June 18, 2018
Past studies have shown that biparental care of offspring can be affected negatively when females and males are exposed to bisphenol A (BPA); however, previous studies have not characterized how long-term effects of BPA exposure ...

New compound shown to be as effective as FDA-approved drugs against life-threatening infections

June 15, 2018
Purdue University researchers have identified  a new compound that in preliminary testing has shown itself to be as effective as antibiotics approved by the Food and Drug Administration to treat life-threatening infections ...

Foods combining fats and carbohydrates more rewarding than foods with just fats or carbs

June 14, 2018
Researchers show that the reward center of the brain values foods high in both fat and carbohydrates—i.e., many processed foods—more than foods containing only fat or only carbs. A study of 206 adults, to appear June ...

3-D imaging and computer modeling capture breast duct development

June 14, 2018
Working with hundreds of time-lapse videos of mouse tissue, a team of biologists joined up with civil engineers to create what is believed to be the first 3-D computer model to show precisely how the tiny tubes that funnel ...

Beating cancer at its own game with a Trojan horse telomerase

June 13, 2018
Telomerase is a reverse transcriptase that uses an RNA template to synthesize telomeres. These repeat sequences bind special proteins that fold the ends of chromosomes back onto themselves to create a stable cap. When this ...

Turning the tables on the cholera pathogen

June 13, 2018
Recent cholera outbreaks in regions that are ravaged by war, struck by natural disasters, or simply lack basic sanitation, such as Yemen or Haiti, are making the development of new and more effective interventions a near-term ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.