Scientists edit gene mutations in inherited form of anemia

October 26, 2016 by Ziba Kashef, Yale University
Scientists edit gene mutations in inherited form of anemia
(Left) Blood smears from anemic mice indicate irregular shapes of red blood cells; (right) wild type mice indicate normal shapes of red blood cells. Credit: Yale University

A Yale-led research team used a new gene editing strategy to correct mutations that cause thalassemia, a form of anemia. Their gene editing technique provided corrections to the mutations and alleviated the disease in mice, the researchers said. The finding could lead to studies of a similar gene therapy to treat people with inherited blood disorders.

The study was published Oct. 26 by Nature Communications.

Gene editing techniques have the potential to treat blood disorders that run in families, such as thalassemia and , but their application has been largely limited to cells in a laboratory and not living animals. To achieve gene editing in mice with thalassemia, professor of therapeutic radiology and of genetics Dr. Peter M. Glazer and his co-authors developed an alternative approach using a novel combination of nanoparticles, synthetic pieces of DNA, and a simple IV injection.

The cross-disciplinary research team identified a protein derived from bone marrow that has the ability to activate stem cells—the cells that are the most responsive to gene editing. They combined the protein with synthetic molecules, known as PNAs, that mimic DNA and bind to the target gene to form a triple helix. This triggers the cell's own repair processes to fix the disease-causing mutation.

The team then utilized nanoparticles, developed in the lab of Mark Saltzman, professor of biomedical engineering, to transport the PNAs to the target mutation in mice. The final step was to use an IV injection to deliver the gene-editing package.

The researchers found that the technique corrected the mutation to such a degree that the mice no longer had symptoms of thalassemia. After 140 days, they tested hemoglobin levels in the animals and found them to be normal.

"The fundamental result here is that with nanoparticles containing PNAs, along with template DNA, and simple IV infusion of molecules, we achieved enough to effectively cure the anemia in mice that had thalassemia," Glazer said.

In addition, because the research team used tiny pieces of DNA that were produced chemically, this technique avoided the type of unintended outcomes that other techniques, like CRISPR, can cause when they alter the genome. "We demonstrated we have extremely low off-target effects," Glazer noted.

If the strategy proves effective in clinical studies, it could lead to the development of gene therapy for people with , and potentially sickle cell disease and other inherited , he said. "We might get enough cells corrected that individuals are not anemic anymore. We could achieve a symptomatic cure."

Explore further: CRISPR gene editing reveals new therapeutic approach for blood disorders

Related Stories

CRISPR gene editing reveals new therapeutic approach for blood disorders

August 15, 2016
An international team of scientists led by researchers at St. Jude Children's Research Hospital has found a way to use CRISPR gene editing to help fix sickle cell disease and beta-thalassemia in blood cells isolated from ...

Genome engineering paves the way for sickle cell cure

October 12, 2016
A team of physicians and laboratory scientists has taken a key step toward a cure for sickle cell disease, using CRISPR-Cas9 gene editing to fix the mutated gene responsible for the disease in stem cells from the blood of ...

The slow climb from innovation to cure—treating anaemia with gene editing

October 19, 2016
The ability to precisely edit DNA via CRISPR technology has emerged as the one of the most powerful advances in biology. A new paper showing repair of a genetic mutation in human blood cells represents an important step towards ...

Scientists use gene editing to correct mutation in cystic fibrosis

April 27, 2015
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.

Gene editing of blood stem cells can correct disease-causing mutations

September 23, 2016
Recent advances in gene editing technology, which allows for targeted repair of disease-causing mutations, can be applied to hematopoietic stem cells with the potential to cure a variety of hereditary and congenital diseases. ...

Recommended for you

Psychiatric disorders share an underlying genetic basis

June 21, 2018
Psychiatric disorders such as schizophrenia and bipolar disorder often run in families. In a new international collaboration, researchers explored the genetic connections between these and other disorders of the brain at ...

Deep data dive helps predict cerebral palsy

June 21, 2018
When University of Delaware molecular biologist Adam Marsh was studying the DNA of worms living in Antarctica's frigid seas to understand how the organisms managed to survive—and thrive—in the extremely harsh polar environment, ...

Genetic variation in progesterone receptor tied to prematurity risk, study finds

June 21, 2018
Humans have unexpectedly high genetic variation in the receptor for a key pregnancy-maintaining hormone, according to research led by scientists at the Stanford University School of Medicine. The finding may help explain ...

Shared genetics may shape treatment options for certain brain disorders

June 20, 2018
Symptoms of schizophrenia and bipolar disorder, including psychosis, depression and manic behavior, have both shared and distinguishing genetic factors, an international consortium led by researchers from Vanderbilt University ...

Scientists unravel DNA code behind rare neurologic disease

June 20, 2018
Scientists conducting one of the largest full DNA analyses of a rare disease have identified a gene mutation associated with a perplexing brain condition that blinds and paralyzes patients.

Simple sugar delays neurodegeneration caused by enzyme deficiency

June 20, 2018
A new therapeutic approach may one day delay neurodegeneration typical of a disease called mucopolysaccharidoses IIIB (MPS IIIB). Neurodegeneration in this condition results from the abnormal accumulation of essential cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.