Scientists edit gene mutations in inherited form of anemia

October 26, 2016 by Ziba Kashef
Scientists edit gene mutations in inherited form of anemia
(Left) Blood smears from anemic mice indicate irregular shapes of red blood cells; (right) wild type mice indicate normal shapes of red blood cells. Credit: Yale University

A Yale-led research team used a new gene editing strategy to correct mutations that cause thalassemia, a form of anemia. Their gene editing technique provided corrections to the mutations and alleviated the disease in mice, the researchers said. The finding could lead to studies of a similar gene therapy to treat people with inherited blood disorders.

The study was published Oct. 26 by Nature Communications.

Gene editing techniques have the potential to treat blood disorders that run in families, such as thalassemia and , but their application has been largely limited to cells in a laboratory and not living animals. To achieve gene editing in mice with thalassemia, professor of therapeutic radiology and of genetics Dr. Peter M. Glazer and his co-authors developed an alternative approach using a novel combination of nanoparticles, synthetic pieces of DNA, and a simple IV injection.

The cross-disciplinary research team identified a protein derived from bone marrow that has the ability to activate stem cells—the cells that are the most responsive to gene editing. They combined the protein with synthetic molecules, known as PNAs, that mimic DNA and bind to the target gene to form a triple helix. This triggers the cell's own repair processes to fix the disease-causing mutation.

The team then utilized nanoparticles, developed in the lab of Mark Saltzman, professor of biomedical engineering, to transport the PNAs to the target mutation in mice. The final step was to use an IV injection to deliver the gene-editing package.

The researchers found that the technique corrected the mutation to such a degree that the mice no longer had symptoms of thalassemia. After 140 days, they tested hemoglobin levels in the animals and found them to be normal.

"The fundamental result here is that with nanoparticles containing PNAs, along with template DNA, and simple IV infusion of molecules, we achieved enough to effectively cure the anemia in mice that had thalassemia," Glazer said.

In addition, because the research team used tiny pieces of DNA that were produced chemically, this technique avoided the type of unintended outcomes that other techniques, like CRISPR, can cause when they alter the genome. "We demonstrated we have extremely low off-target effects," Glazer noted.

If the strategy proves effective in clinical studies, it could lead to the development of gene therapy for people with , and potentially sickle cell disease and other inherited , he said. "We might get enough cells corrected that individuals are not anemic anymore. We could achieve a symptomatic cure."

Explore further: CRISPR gene editing reveals new therapeutic approach for blood disorders

Related Stories

CRISPR gene editing reveals new therapeutic approach for blood disorders

August 15, 2016
An international team of scientists led by researchers at St. Jude Children's Research Hospital has found a way to use CRISPR gene editing to help fix sickle cell disease and beta-thalassemia in blood cells isolated from ...

Genome engineering paves the way for sickle cell cure

October 12, 2016
A team of physicians and laboratory scientists has taken a key step toward a cure for sickle cell disease, using CRISPR-Cas9 gene editing to fix the mutated gene responsible for the disease in stem cells from the blood of ...

The slow climb from innovation to cure—treating anaemia with gene editing

October 19, 2016
The ability to precisely edit DNA via CRISPR technology has emerged as the one of the most powerful advances in biology. A new paper showing repair of a genetic mutation in human blood cells represents an important step towards ...

Scientists use gene editing to correct mutation in cystic fibrosis

April 27, 2015
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.

Gene editing of blood stem cells can correct disease-causing mutations

September 23, 2016
Recent advances in gene editing technology, which allows for targeted repair of disease-causing mutations, can be applied to hematopoietic stem cells with the potential to cure a variety of hereditary and congenital diseases. ...

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.