New biomaterial for preventing uncontrolled bleeding

November 16, 2016, Brigham and Women's Hospital
An image highlighting the injectability of the biomaterial through a catheter. The biomaterial can maintain its shape upon injection, only becoming liquid after a force is applied. Inset is a zoomed image of the shear-thinning biomaterial extruded from the catheter tip. Credit: Ali Khademhosseini, Brigham and Women's Hospital

Small blood clots called emboli are mostly known for traveling through the vasculature before they lodge and obstruct vessels, impeding blood and oxygen supply to organs like the lung. To stop excessive bleeding or the flow of blood into an aneurysm, clinicians harness the same principle by forming artificial therapeutic emboli that can plug blood-carrying vessels. Using steerable catheters, they place tiny soft metal coils or liquid embolic agents ('glues') into the affected artery to block the passage of blood.

However, both procedures do not come without problems and risks. Coil embolization can be ineffective if the coil is not positioned or seized accurately and coils need efficient blood clotting in patients to be stabilized. Liquid embolic agents on the other hand can be accidentally cemented to catheters or non-targeted areas due to insufficient control of their solidification. And, importantly, both types of emboli can become leaky over time.

A team of researchers at Harvard's Wyss Institute for Biologically Inspired Engineering, Brigham and Women's Hospital, the Mayo Clinic and MIT now describe a new class of hydrogel-based embolic agents, which could help eliminate all these caveats. Their study, published in Science Translational Medicine, provides proof-of-concept and first preclinical evidence in animal models that the shear-controlled hydrogel can be delivered by catheters and injected into blood vessels to form robust and safe blockages.

"This new approach to vascular embolization is based on a hydrogel composite with phase properties we can reliably control with mechanical pressure. It completely blocks vessels in situations where other methods can fail such as in vascular areas that are highly convoluted or subject to unusual blood pressures, and, importantly, it still works when normal blood coagulation is impaired like in patients receiving blood-thinners or suffering from an intrinsic inability to efficiently form blood clots," said Ali Khademhosseini, Ph.D., who is an Associate Faculty member of the Wyss Institute, and a Professor at the Harvard-MIT's Division of Health Sciences and Technology and Brigham and Women's Hospital.

A. Schematic of shear-thinning biomaterial (STB) fabrication. B. Proposed syringe-based delivery of STB (dark blue) from a catheter (light blue) into a blood vessel to occlude the vasculature and promote local thrombus formation at the exposed ends (yellow). Credit: Avery et al., Science Translational Medicine (2016)

In 2014, Khademhosseini, together with Bradley Olsen, Ph.D., an Associate Professor of Chemical Engineering at MIT and also an author on the present study, reported the so-called Shear-Thinning Biomaterial (STB) and demonstrated that, when applied in bulk to larger wound surfaces, it can seal them off to halt bleeding.

The STB is a mixture of two components that form a malleable hydrogel: gelatin molecules combined with small discs of silicate nanoplatelets that mimic the function of actual platelet cells to promote blood clotting reactions. When the STB is put under mechanical pressure for example by pressing it through a syringe, it flows or 'thins'; when the pressure abates, it again solidifies, this time to create a tight barrier.

In the present study, initiated together with Rahmi Oklu, M.D., Ph.D., FSIR, an interventional radiologist at Massachusetts General Hospital, the team investigated the possibility of delivering the STB via standard catheters directly within difficult-to-reach locations of the body's vasculature to block blood flow in targeted vessels. Oklu is now an Associate Professor at the Mayo Clinic and co-corresponded the study with Khademhosseini.

Setting the stage, the researchers first optimized the formulation of the STB for effective delivery by clinical catheters and needles. They also tweaked the STB to ensure it gelled on desirable time scales without any risk of inadvertent cementing to the delivering catheter, creating a complete blockage and to confirm that the artificial clot still formed in the presence of anti-coagulants.

A GIF showing injection of the shear-thinning biomaterial (STB) from a catheter into an aqueous solution. The STB is cohesive and remains stable throughout the injection process. Credit: Rahkendra Ice / Avery et al. / Science Translational Medicine (2016)

The optimized STB was taken into in vivo studies in mice and pigs with more human-like vascular architectures. "In the animals, we saw that STBs, delivered with standard clinical catheters into centrally located vessels, formed very effective casts, without leaking or fragmenting, excluding any risk of pulmonary embolisms down the line," said Reginald Avery, the first author of the study who did this work as a graduate student with Khademhosseini and Olsen. "Moreover, the induced embolization was biodegraded and remodeled into more natural tissue by infiltrating cells over time."

Another key advantage that STBs hold over commonly performed embolization with coils is that they can be linked to contrast agents, which allows clinicians to follow their success in patients with contrast imaging methods and to make ad hoc corrections if necessary. The team believes that in the future STBs could also be coupled to specific stimuli that attract additional immune cells and accelerate remodeling of the clot.

"This new mechanoresponsive material-based approach to therapeutic vascular embolization represents a exciting new advance for embolization therapy, and it potentially offers a great advantage for treatment of patients with clotting disorders who now have limited other options," said Donald Ingber, M.D., Ph.D. the Institute's Founding Director and the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences.

Explore further: Pipeline device can treat challenging 'distal anterior' brain aneurysms

More information: "An injectable shear-thinning biomaterial for endovascular embolization," Science Translational Medicine, stm.sciencemag.org/lookup/doi/ … scitranslmed.aah5533

Related Stories

Pipeline device can treat challenging 'distal anterior' brain aneurysms

June 21, 2016
A recently introduced technology called the Pipeline Embolization Device (PED) can provide a less-invasive approach for difficult-to-treat aneurysms of the arteries supplying blood to the front of the brain, reports a study ...

Scientists capture cell 'crosstalk' during blood vessel development

April 13, 2016
The blood vessels that carry oxygen and nutrients throughout the body develop through a complex process of reactions—or crosstalk—between cells that is regulated by cell-specific gene expression. In a recent study published ...

Bio-engineered molecule shows promise for quick control of bleeding

July 25, 2016
Every five minutes someone in the U.S. dies from a blood clot, through its role in strokes, heart attacks or other severe conditions. For decades, doctors have used the anticoagulant drug warfarin (Coumadin) to prevent clots. ...

Tiny mesh tube devices to treat brain aneurysms

January 6, 2016
An Oxford spin-out is developing advanced tiny metallic mesh tube devices invented by engineers and clinicians at the University to treat patients suffering from brain aneurysms.

Researchers develop polymer that helps wounds heal by strengthening clotting

March 6, 2015
(Medical Xpress)—A team of researchers at the University of Washington has announced the development of a polymer, than when injected into rats, helped slow bleeding by boosting clotting effectiveness. In their paper published ...

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.