Human genome sequences linked to health data will change clinical medicine

December 22, 2016
Credit: CC0 Public Domain

The value of intersecting the sequencing of individuals' exomes (all expressed genes) or full genomes to find rare genetic variants—on a large scale—with their detailed electronic health record (EHR) information has "myriad benefits, including the illumination of basic human biology, the early identification of preventable and treatable illnesses, and the identification and validation of new therapeutic targets," wrote Daniel J. Rader, MD, chair of the Department of Genetics, in the Perelman School of Medicine at the University of Pennsylvania, in Science this week, with Scott M. Damrauer, MD, an assistant professor of Surgery at Penn and the Veterans Affairs Medical Center in Philadelphia.

Their commentary accompanies two linked studies on the topic in the same issue. One reports on whole-exome sequencing of more than 50,000 individuals from the Geisinger Health System in Pennsylvania and the analyses of rare variants with data from longitudinal . They identified hundreds of people with rare "loss-of-function" gene variants that were linked to observable physiological characteristics, or phenotypes. The second article reports on a study that identified individuals in the same database with familial hypercholesterolemia, many of whom had not been diagnosed or treated.

"These results demonstrate the enormous potential of this approach for promoting scientific biomedical discovery and influencing the practice of clinical medicine," the authors wrote.

Because sequencing ever-larger datasets of human exomes—and full genomes—has become faster, more accurate, and less expensive, researchers can find more quickly. And then matching these rare genetic finds to EHR phenotype data has the potential to inform health care in important ways.

"Many single-gene disorders like familial hypercholesterolemia [FH] are under-diagnosed," Rader said. "Once an individual with a single-gene disorder is identified, not only can that person be placed on appropriate medical intervention, but we can also screen his or her extended family members to see who else carries the mutant gene and may benefit from preventative approaches." He cites a recent list of 59 "medically actionable" genes, curated by the American College of Medical Genetics and Genomics (ACMG), in which loss of function mutations can lead to specific medical interventions. For example, individuals from the extended family of a person found to have FH who also carry the mutation should have their cholesterol checked and be placed on medication to reduce cholesterol.

"Identifying rare variants can also contribute to our understanding of more common, complex disorders such as Type 2 diabetes or chronic kidney disease," Rader said. "These efforts will one day reveal the fundamental value of what the genome contains for health and disease and pave the way for precision medicine in every clinic and hospital."

Explore further: Largest study of its kind finds rare genetic variations linked to schizophrenia

More information: "'Pheno'menal value for human health," Science science.sciencemag.org/cgi/doi/10.1126/science.aal4573

Related Stories

New insights into human genetic variation revealed

August 17, 2016

Published in today's edition of Nature, the research led by Dr Monkol Lek of the University of Sydney and Dr Daniel MacArthur of The Broad Institute of MIT and Harvard Universities reveals patterns of genetic variation worldwide ...

Recommended for you

New insights on triggering muscle formation

April 26, 2017

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a previously unrecognized step in stem cell-mediated muscle regeneration. The study, published in Genes and Development, provides new ...

Risk of obesity influenced by changes in our genes

April 25, 2017

These changes, known as epigenetic modifications, control the activity of our genes without changing the actual DNA sequence. One of the main epigenetic modifications is DNA methylation, which plays a key role in embryonic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.