Researchers provide molecular portraits of a new cancer drug target

December 19, 2016, University of Minnesota

Unprecedented images of cancer genome-mutating enzymes acting on DNA provide vital clues into how the enzymes work to promote tumor evolution and drive poor disease outcomes. These images, revealed by University of Minnesota researchers, provide the first ever high-resolution pictures of molecular complexes formed between DNA and the human APOBEC3A and APOBEC3B enzymes.

The research is published today online in Nature Structural and Molecular Biology.

The DNA mutating enzymes called APOBECs are a major source of mutation in breast, lung, cervical, head/neck and many other cancer types.

"These enzymes normally function to protect us from viral infections," said Reuben Harris, Ph.D., investigator of the Howard Hughes Medical Institute and professor of Biochemistry, Molecular Biology, and Biophysics, member of the Masonic Cancer Center, and associate director of the Institute of Molecular Virology, University of Minnesota. "However, these enzymes can become misregulated in cancer cells and cause mutations in our own genomic DNA. These mutations fuel tumor evolution and promote poor clinical outcomes such as drug resistance and metastasis."

With an imaging technique called x-ray crystallography, which uses a high energy x-ray beam to visualize the atomic details of molecules, researchers were able to see an unexpected mode of DNA binding activity. A unique U-shaped DNA conformation and defined pockets for the target cytosine and the adjacent thymine base explains the specific mutation signature left behind by the enzyme interacting with tumor DNA.

"Our crystal structures and corroborating biochemical experiments show how APOBEC3A and APOBEC3B engage DNA substrates," said Hideki Aihara, Ph.D., associate professor in the department of Biochemistry, Molecular Biology and Biophysics and member of the Institute of Molecular Virology and the Masonic Cancer Center at the University of Minnesota. "These structures show an unexpected mode of DNA engagement with a sharply bent DNA strand and flipped-out nucleotides. Our findings were surprising, but actually make a lot of sense and explain many previous observations about this family of proteins."

The DNA-binding mechanism suggests ways to block enzyme activity in cancer, which could slow the rate at which tumors evolve. Inhibiting APOBEC activity could make current anti- therapies more effective.

Work continues to take and analyze additional portraits of these enzymes with different DNA substrates and to devise strategies for inhibition.

Explore further: Antiviral enzyme contributes to several forms of cancer

More information: Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B, Nature Structural and Molecular Biology, nature.com/articles/doi:10.1038/nsmb.3344

Related Stories

Antiviral enzyme contributes to several forms of cancer

July 14, 2013
Researchers at the University of Minnesota have discovered that a human antiviral enzyme causes DNA mutations that lead to several forms of cancer.

Culprit found in breast cancer resistance to tamoxifen

October 7, 2016
Researchers have discovered that a protein found naturally in cells that provides some protection from viruses is responsible for creating mutations that drive resistance to tamoxifen treatment in breast cancer. Because the ...

Researchers discover enzyme behind breast cancer mutations

February 6, 2013
Researchers at the University of Minnesota have uncovered a human enzyme responsible for causing DNA mutations found in the majority of breast cancers. The discovery of this enzyme – called APOBEC3B – may change the way ...

An unexpected role for epigenetic enzymes in cancer

December 6, 2016
To better understand how cancer initiates and spreads, Yale associate professor of pathology Qin Yan turned to the field of epigenetics, which examines changes in the expression of genes and proteins that do not affect the ...

Resistance of ER-positive breast cancer to tamoxifen therapy may be driven by APOBEC3B

December 10, 2015
Responses to tamoxifen were significantly prolonged by reducing levels of the enzyme APOBEC3B in preclinical models of estrogen receptor-positive breast cancer and significantly shortened by increasing levels of APOBEC3B, ...

Scientists discover new cancer connection

December 14, 2016
A biologist at The University of Texas at Dallas and his colleagues have discovered that two enzymes previously linked independently with keeping cancer cells alive actually work in tandem to spur tumor growth.

Recommended for you

Treatment shown to improve the odds against bone marrow cancer

December 15, 2018
Hope has emerged for patients with a serious type of bone marrow cancer as new research into a therapeutic drug has revealed improved outcomes and survival rates.

Immunotherapy combo not approved for advanced kidney cancer patients on the NHS

December 14, 2018
People with a certain type of advanced kidney cancer will not be able to have a combination of two immunotherapy drugs on the NHS in England.

New drug seeks receptors in sarcoma cells, attacks tumors in animal trials

December 13, 2018
A new compound that targets a receptor within sarcoma cancer cells shrank tumors and hampered their ability to spread in mice and pigs, a study from researchers at the University of Illinois reports.

Surgery unnecessary for many prostate cancer patients

December 13, 2018
Otherwise healthy men with advanced prostate cancer may benefit greatly from surgery, but many with this diagnosis have no need for it. These conclusions were reached by researchers after following a large group of Scandinavian ...

Lethal combination: Drug cocktail turns off the juice to cancer cells

December 12, 2018
A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth—this was discovered by researchers from the University of Basel's Biozentrum two years ago. In a follow-up study, ...

Combining three treatment strategies may significantly improve melanoma treatment

December 12, 2018
A study by a team led by a Massachusetts General Hospital (MGH) investigator finds evidence that combining three advanced treatment strategies for malignant melanoma—molecular targeted therapy, immune checkpoint blockade ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.