Researchers provide molecular portraits of a new cancer drug target

December 19, 2016, University of Minnesota

Unprecedented images of cancer genome-mutating enzymes acting on DNA provide vital clues into how the enzymes work to promote tumor evolution and drive poor disease outcomes. These images, revealed by University of Minnesota researchers, provide the first ever high-resolution pictures of molecular complexes formed between DNA and the human APOBEC3A and APOBEC3B enzymes.

The research is published today online in Nature Structural and Molecular Biology.

The DNA mutating enzymes called APOBECs are a major source of mutation in breast, lung, cervical, head/neck and many other cancer types.

"These enzymes normally function to protect us from viral infections," said Reuben Harris, Ph.D., investigator of the Howard Hughes Medical Institute and professor of Biochemistry, Molecular Biology, and Biophysics, member of the Masonic Cancer Center, and associate director of the Institute of Molecular Virology, University of Minnesota. "However, these enzymes can become misregulated in cancer cells and cause mutations in our own genomic DNA. These mutations fuel tumor evolution and promote poor clinical outcomes such as drug resistance and metastasis."

With an imaging technique called x-ray crystallography, which uses a high energy x-ray beam to visualize the atomic details of molecules, researchers were able to see an unexpected mode of DNA binding activity. A unique U-shaped DNA conformation and defined pockets for the target cytosine and the adjacent thymine base explains the specific mutation signature left behind by the enzyme interacting with tumor DNA.

"Our crystal structures and corroborating biochemical experiments show how APOBEC3A and APOBEC3B engage DNA substrates," said Hideki Aihara, Ph.D., associate professor in the department of Biochemistry, Molecular Biology and Biophysics and member of the Institute of Molecular Virology and the Masonic Cancer Center at the University of Minnesota. "These structures show an unexpected mode of DNA engagement with a sharply bent DNA strand and flipped-out nucleotides. Our findings were surprising, but actually make a lot of sense and explain many previous observations about this family of proteins."

The DNA-binding mechanism suggests ways to block enzyme activity in cancer, which could slow the rate at which tumors evolve. Inhibiting APOBEC activity could make current anti- therapies more effective.

Work continues to take and analyze additional portraits of these enzymes with different DNA substrates and to devise strategies for inhibition.

Explore further: Antiviral enzyme contributes to several forms of cancer

More information: Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B, Nature Structural and Molecular Biology, nature.com/articles/doi:10.1038/nsmb.3344

Related Stories

Antiviral enzyme contributes to several forms of cancer

July 14, 2013
Researchers at the University of Minnesota have discovered that a human antiviral enzyme causes DNA mutations that lead to several forms of cancer.

Culprit found in breast cancer resistance to tamoxifen

October 7, 2016
Researchers have discovered that a protein found naturally in cells that provides some protection from viruses is responsible for creating mutations that drive resistance to tamoxifen treatment in breast cancer. Because the ...

Researchers discover enzyme behind breast cancer mutations

February 6, 2013
Researchers at the University of Minnesota have uncovered a human enzyme responsible for causing DNA mutations found in the majority of breast cancers. The discovery of this enzyme – called APOBEC3B – may change the way ...

An unexpected role for epigenetic enzymes in cancer

December 6, 2016
To better understand how cancer initiates and spreads, Yale associate professor of pathology Qin Yan turned to the field of epigenetics, which examines changes in the expression of genes and proteins that do not affect the ...

Resistance of ER-positive breast cancer to tamoxifen therapy may be driven by APOBEC3B

December 10, 2015
Responses to tamoxifen were significantly prolonged by reducing levels of the enzyme APOBEC3B in preclinical models of estrogen receptor-positive breast cancer and significantly shortened by increasing levels of APOBEC3B, ...

Scientists discover new cancer connection

December 14, 2016
A biologist at The University of Texas at Dallas and his colleagues have discovered that two enzymes previously linked independently with keeping cancer cells alive actually work in tandem to spur tumor growth.

Recommended for you

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

Catching up to brain cancer: Researchers develop accurate model of how aggressive cancer cells move and spread

February 15, 2018
A brief chat at a Faculty Senate meeting put two University of Delaware researchers onto an idea that could be of great value to cancer researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.