Scientists pave the way for enhanced detection and treatment of vascular graft infections

January 11, 2017, Elsevier
MRI-[18F]-FDG imaging shows a high level of inflammation at the site of the catheter 10 days after Staphylococcus aureus infection. The radiopharmaceutical fludeoxyglucose (FDG) F 18 was used to visualize bacteria-induced inflammation. Credit: The American Journal of Pathology

A rising prevalence of cardiovascular disease has generated substantial growth in the use of medical implants, such as vascular grafts. Unfortunately, the increased use of implanted devices has been accompanied by more device-associated infections, serious complications, and death. A study in The American Journal of Pathology reports the detrimental aftereffects of infected grafts, including the formation of biofilms that can shelter bacteria and function as a source of recurrent infection. This new research should enable researchers to develop better strategies to diagnose and manage vascular graft infections.

"Staphylococcus aureus (S. aureus) is one of the leading causes of infected grafts because it readily adheres to the surface of the implanted device and forms thick biofilm layers. Biofilms can shelter bacteria from the patient's immune responses or antibiotic treatment. These biofilm layers are difficult to detect because they are often unaccompanied by clinical symptoms," noted lead investigator Bettina Löffler, MD, Director of the Institute of Medical Microbiology, Jena University Hospital (Germany). "Currently, there are no effective treatment strategies against these infections. Biofilms require antibiotic concentrations up to 1000 times higher than normal and these concentrations are not clinically feasible. It is of great importance to understand the underlying pathogenesis of on in order to find quick and effective treatment possibilities without having to resort to invasive procedures such as surgical removal."

The researchers developed a new mouse model that more closely mimics the human condition. The catheter is placed within a blood vessel (the right carotid artery) and bacteria reach the catheter via the blood stream (bacteria are introduced into tail veins seven days after the catheter is inserted). "Just as in humans, with this model the bacteria need to overcome the stress of the blood flow, the shear stress induced by the blood flow, and the host's immune system to form a biofilm infection on the catheter," explained Dr. Löffler. By establishing this novel model in mice investigators opened up the possibility to use the vast array of genetically manipulated mice available, which will allow the study of many different aspects of the disease and identification of better and more reliable treatment and detection strategies for vascular graft infections.

An interesting finding of the study was that all S. aureus strains tested formed biofilms in vivo, regardless of whether they formed high biofilm levels in cell culture. This finding demonstrates that colonization of vascular grafts in vivo is a general characteristic of all S. aureus infections and that these bacteria are highly adaptive to their environment.

Using PET imaging, the investigators discovered a high level of inflammation at the site of the catheter during vascular graft infections. MR imaging revealed that velocity was decreased through the catheter due to infection and biofilm formation.

"Our model takes all steps of the pathogenesis of infected implants into account and closely represents the clinical situation," commented Dr. Löffler. "It provides a solid platform for microbiological and immunological experiments that could provide crucial insights into the pathogenesis as well as the diagnosis and treatment of these devastating infections."

Explore further: Manuka honey may help prevent life-threatening urinary infections

More information: The American Journal of Pathology, DOI: 10.1016/j.ajpath.2016.10.005

Related Stories

Manuka honey may help prevent life-threatening urinary infections

September 27, 2016
Manuka honey could prevent serious urinary tract infections caused by catheters – tubes used to drain patients' bladders, new laboratory research has found.

New potent nanodrug to combat antibiotic-resistant infections

March 31, 2016
A research team led by University of Arkansas chemist Jingyi Chen and University of Arkansas for Medical Sciences microbiologist Mark Smeltzer has developed an alternative therapeutic approach to fighting antibiotic-resistant ...

Recommended for you

Fresh approach to tuberculosis vaccine offers better protection

January 17, 2018
A unique platform that resulted in a promising HIV vaccine has also led to a new, highly effective vaccine against tuberculosis that is moving toward testing in humans.

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

Newly-discovered TB blood signal provides early warning for at-risk patients

January 17, 2018
Tuberculosis can be detected in people with HIV infection via a unique blood signal before symptoms appear, according to a new study by researchers from the Crick, Imperial College London and the University of Cape Town.

New study validates clotting risk factors in chronic kidney disease

January 17, 2018
In late 2017, researchers from Boston University School of Medicine (BUSM) discovered and published (Science Translational Medicine, (9) 417, Nov 2017) a potential treatment target to prevent chronic kidney disease (CKD) ...

New study offers insights on genetic indicators of COPD risk

January 16, 2018
Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

Previous influenza virus exposures enhance susceptibility in another influenza pandemic

January 16, 2018
While past exposure to influenza A viruses often builds immunity to similar, and sometimes different, strains of the virus, Canadian researchers are calling for more attention to exceptions to that rule.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.