Genetic sequencing offers same-day TB testing

March 9, 2017, University of Oxford
Credit: University of Oxford

Researchers have for the first time shown that standard tuberculosis (TB) diagnostic tests can be replaced by a sub-24 hour genetic test applied to the TB bacteria in a patient's sputum.

It currently takes up to two months to obtain the full diagnostic information for a patient with TB, as the bacteria grow very slowly in the laboratory. Scientists have sought for years to bypass this time-consuming step by examining the bacterial DNA directly from a sputum sample. However since most of the cells in sputum are human, it is difficult to spot the signal (TB DNA) within the noise (human and other bacteria) and even harder to find a method that might be affordable and practical across the world.

The new process, led by researchers from the University of Oxford and described in the Journal of Clinical Microbiology, rapidly processes the sputum to preferentially retain TB, using simple and relatively affordable materials, and then sequences and analyses the bacterial DNA. The Oxford team worked with researchers from the University of Nottingham, the Foundation for Medical Research, Mumbai, and Public Health England.

Until recently, DNA sequencing has required heavy machines and a well-equipped laboratory, which has limited its potential applications in the field. In this study, researchers have also shown that by using a new, real-time, handheld sequencing device (Oxford Nanopore MInION) they can achieve identical results, but with a process that might be applied anywhere in the world. In one example they achieved an effective turnaround time of 12.5 hours.

By using DNA sequencing, not only does this method detect drug-resistant TB bugs – vital information for the patient - but it also enables the tracking the geographical spread of strains, which is hugely valuable to public health workers, and something traditional tests cannot do.

TB is one of the top causes of death by infectious disease in the world, with 10.4 million cases of the disease in 2015, and 1.1 million deaths directly attributable to TB.

Dr Zamin Iqbal from the Wellcome Trust Centre of Human Genetics at Oxford University, who co-led the study, said: 'One of the great challenges with the management of TB is the need for rapid, comprehensive tests that do not require a hi-tech laboratory. We have shown that it is possible to get all information needed both for clinical management and for tracking disease spread, all within 24 hours of taking the sample from the patient. Further, by achieving this with a handheld device, we open the door to in-field diagnostic tests for TB.'

Dr Antonina Votintseva, lead author, said: 'Although genome sequencing has been used increasingly in research for analysing TB, the limiting factor has continued to be the weeks spent culturing the bacteria in the laboratory. By developing an affordable and simple method for extracting M. tuberculosis DNA direct from sputum, and thereby cutting turnaround time to below 24 hours, we have taken a great step towards comprehensive point-of-care diagnosis.

'There is more work to be done of course - our goal is to return test results before the patient leaves their clinic, with huge potential for reducing transmission of the disease, and of drug resistance.'

Dr Stephen Caddick, Wellcome Trust Director of Innovation, said: 'It can take many weeks for conventional tests for TB to provide results. Dr Iqbal and his team have made a significant breakthrough by developing a low-cost DNA extraction method which enables TB whole genome sequencing direct from patient samples and provides results in less than a day. The ability to use this technology to identify bacterial strains that may be resistant to antibiotic treatment, particularly in low and middle income countries, could be invaluable in the fight to tackle drug-resistant infections.'

Explore further: New laptop program can identify drug resistance from bacterial genomes

More information: Antonina A. Votintseva et al. Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples., Journal of Clinical Microbiology (2017). DOI: 10.1128/JCM.02483-16

Related Stories

New laptop program can identify drug resistance from bacterial genomes

December 21, 2015
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance. The software ...

New test could identify resistant tuberculosis faster

May 13, 2015
The time needed to genetically sequence the bacteria causing tuberculosis (Mtb) from patient samples has been reduced from weeks to days using a new technique developed by a UCL-led team. This could help health service providers ...

UTI testing technology cuts screening time to four hours

September 26, 2016
Researchers using DNA sequencing to profile antibiotic resistance in infection have achieved a turnaround time from 'sample to answer' of less than four hours for urinary tract infections (UTIs).

One step closer to personalized antibiotic treatment

February 10, 2017
Microbes in the gut can "disarm" antibiotics, leading to antibiotic resistance and incurable infections. A new method makes it possible to quickly detect resistance genes and, hence, choose the most efficient type of antibiotic ...

Global team aim for faster, more effective TB diagnosis

March 24, 2016
As World TB day (24 March) marks global efforts to eliminate tuberculosis as a public health problem by 2035, Oxford University researchers, in partnership with Public Health England (PHE), will lead a new worldwide collaboration ...

Recommended for you

Molecular network boosts drug resistance and virulence in hospital-acquired bacterium

May 24, 2018
In response to antibiotics, a gene regulation network found in the bacterium Acinetobacter baumannii acts to boost both virulence and antibiotic resistance. Edward Geisinger of Tufts University School of Medicine and colleagues ...

Past use of disinfectants and PPE for Ebola could inform future outbreaks

May 24, 2018
Data from the 2014 Ebola virus outbreak at two Sierra Leone facilities reveal daily usage rates for disinfectant and personal protective equipment, informing future outbreaks, according to a study published May 24, 2018 in ...

Reconstructing Zika's spread

May 24, 2018
The urgent threat from Zika virus, which dominated news headlines in the spring and summer of 2016, has passed for now. But research into how Zika and other mosquito-borne infections spread and cause epidemics is still very ...

Tick bite protection: New CDC study adds to the promise of permethrin-treated clothing

May 24, 2018
The case for permethrin-treated clothing to prevent tick bites keeps getting stronger.

Early lactate measurements appear to improve results for septic patients

May 24, 2018
On October 1, 2015, the United States Centers for Medicare and Medicaid Services (CMS) issued a bundle of recommendations defining optimal treatment of patients suffering from sepsis, a life-threatening response to infection ...

Dengue: Investigating antibodies to identify at-risk individuals

May 23, 2018
Using an original mathematical and statistical analysis method, a team of scientists from the Institut Pasteur partnered with researchers from the United States and Thailand to analyze a Thai cohort that has long been a focus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.