Natural resistance to malaria linked to variation in human red blood cell receptors

May 18, 2017
Credit: CC0 Public Domain

Researchers have discovered that protection from the most severe form of malaria is linked with natural variation in human red blood cell genes. A study from the Wellcome Trust Sanger Institute, the Wellcome Trust Centre for Human Genetics and their collaborators has identified a genetic rearrangement of red blood cell glycophorin receptors that confers a 40 per cent reduced risk from severe malaria.

Published in Science, this is the first study to show that large structural variants in human glycophorin genes, which are unusually common in Africa, are protective against malarial disease. It opens a new avenue for research on vaccines to prevent malaria parasites invading red cells.

More than 200 million people a year are infected with malaria and the disease caused the deaths of nearly half a million people worldwide in 2015. Transmitted by mosquitos, the most widespread malarial parasite in Africa is Plasmodium falciparum; it is also the most dangerous.

Plasmodium parasites infect human red blood cells and gain entry via receptors on the cell surface. Previous studies on natural resistance to malaria had implicated a section of human genome near to a cluster of receptor genes. These receptors - glycophorins - are located on the surface of red blood cells and are amongst many receptors that bind Plasmodium falciparum. However, it is only now that they have been shown to be involved in protection against malaria.

Researchers investigated the glycophorin area of the genome in more detail than before using new whole-genome sequence data from 765 volunteers in the Gambia, Burkina Faso, Cameroon and Tanzania. Using this new information they then undertook a study across the Gambia, Kenya and Malawi that included 5310 individuals from the normal population and 4579 people who were hospitalised from . They discovered that people who have a particular rearrangement of the glycophorin genes had a 40 per cent reduced risk of severe malaria.

Dr Ellen Leffler from the University of Oxford, first author on the paper, said. "In this new study we found strong evidence that variation in the glycophorin gene cluster influences malaria susceptibility. We found some people have a complex rearrangement of GYPA and GYPB genes, forming a hybrid glycophorin, and these people are less likely to develop severe complications of the disease."

The hybrid GYPB-A gene is found in a particular rare blood group - part of the MNS* blood group system - where it is known as Dantu. The study found that the GYPB-A Dantu hybrid was present in some people from East Africa, in Kenya, Tanzania and Malawi, but that it was not present in volunteers from West African populations.

Dr Kirk Rockett from the University of Oxford, said: "Analysing the DNA sequences allowed us to identify the location of the join between glycophorins A and B in the hybrid gene. It showed us that the sequence is characteristic of the Dantu antigen in the MNS blood group system."

Studying the glycophorin gene cluster to determine differences between the sequences of the three with confidence is extremely challenging. This study gives insights into unpicking the region and how it connects to the MNS system and impacts malaria susceptibility.

Professor Dominic Kwiatkowski, a lead author from the Wellcome Trust Sanger Institute and University of Oxford, said: "We are starting to find that the glycophorin region of the genome has an important role in protecting people against malaria. Our discovery that a specific variant of glycophorin invasion receptors can give substantial protection against severe will hopefully inspire further research on exactly how Plasmodium falciparum invade red blood cells. This could also help us discover novel parasite weaknesses that could be exploited in future interventions against this deadly disease."

Explore further: Genes that protect African children from developing malaria identified

More information: E.M. Leffler el al., "Resistance to malaria through structural variation of red blood cell invasion receptors," Science (2017). science.sciencemag.org/lookup/ … 1126/science.aam6393

Related Stories

Genes that protect African children from developing malaria identified

September 30, 2015
Published today in Nature, the findings detail a new gene locus that can explain why, in communities where everyone is constantly exposed to malaria, some children develop severe malaria and others don't. Now, researchers ...

Fast-changing genes help malaria to hide in the human body

December 18, 2014
A study of the way malaria parasites behave when they live in human red blood cells has revealed that they can rapidly change the proteins on the surface of their host cells during the course of a single infection in order ...

Recommended for you

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.