Removal of aging cells could extend human life

June 9, 2017
Clearance of SnCs by GCV reduces the development of post-traumatic OA. Credit: UNIST

A recent study, led by an international team of researchers confirms that targeted removal of senescent cells (SnCs), accumulated in many vertebrate tissues as we age, contribute significantly in delaying the onset of age-related pathologies.

This breakthrough research has been led by Dr. Chaekyu Kim of the Johns Hopkins University School of Medicine, who is now at UNIST, and Dr. Ok Hee Jeon of the Johns Hopkins University School of Medicine in collaborations with the Mayo Clinic College of Medicine, the Buck Institute for Research on Aging, the University Medical Center Groningen, Unity Biotechnology, Inc., and the University of California, Berkeley.

In the study, the research team presented a novel pharmacologic candidate that alleviates age-related degenerative joint conditions, such as osteoarthritis (OA) by selectively destroying SnCs. Their findings, published April 24th in Nature Medicine (Impact Factor: 30.357), suggest that the selective removal of old cells from joints could reduce the development of post-traumatic OA and allow new cartilage to grow and repair joints.

Senescent cells (SnCs) accumulate with age in many vertebrate tissues and are present at sites of age-related pathlogy. Although these cells play an essential role in wound healing and injury repair, they may also promote cancer incidence in tissues. For instance, in articular joints, such as the knee and cartilage tissue, SnCs often are not cleared from the area after injury, thereby contributing to OA development.

Professor Chaekyu Kim of Department of Chemistry at UNIST. Credit: UNIST

To test the idea that SnCs might play a causative role in OA, the research team took both younger and older mice and cut their anterior cruciate ligaments (ACL) to minic injury. They, then, administered injections of an experimental drug, named UBX0101 to selectively remove SnCs after transection (ACLT) surgery.

Preclinical studies in mice and human cells suggested that the removal of SnCs significantly reduced the development of post-traumatic OA and related pain and created a prochondrogenic environment for new cartilage to grow and repair joints. Indeed, the research team reported that aged mice did not exhibit signs of cartilage regeneration after treatment with UBX0101 injections,

According to the research team, the relevance of their findings to human disease was validated using chondrocytes isolated from arthritic patients. The research team notes that their findings provide new insights into therapies targeting SnCs for the treatment of trauma and age-related degenerative joint disease.

Prior to this study, Johns Hopkins Technology Ventures (JHTV) granted UNITY Biotechnology Inc. the right to use the intellectual property around the senescent cell technology. UNITY is a company aiming to develop therapeutics that address age-related diseases. Last October, the company announced $116 million in Series B funding from some of the big names in venture capital, including Amazon CEO Jeff Bezo's venture fund Bezos Expeditions, Mayo Clinic Ventures, Venrock, and ARCH Venture Partners. UNITY has completed a rigorous screening and preclinical testing process of candidate drugs, discovered in this study, and is launching a new clinical trial to assess its first drug, for patients with osteoarthritis of the knee this year.

Adapted from Baker et al., (2016) Nature. Credit: Baker et al., (2016) Nature.

Explore further: Clearing out old cells could extend joint health, stop osteoarthritis

More information: Ok Hee Jeon et al, Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment, Nature Medicine (2017). DOI: 10.1038/nm.4324

Related Stories

Clearing out old cells could extend joint health, stop osteoarthritis

April 26, 2017
In a preclinical study in mice and human cells, researchers report that selectively removing old or 'senescent' cells from joints could stop and even reverse the progression of osteoarthritis.

Researchers link senescent cells to most common form of arthritis

August 11, 2016
Researchers at Mayo Clinic have reported a causal link between senescent cells—cells that accumulate with age and contribute to frailty and disease—and osteoarthritis in mice. Their findings appear online in The Journals ...

Findings do not support steroid injections for knee osteoarthritis

May 16, 2017
Among patients with knee osteoarthritis, an injection of a corticosteroid every three months over two years resulted in significantly greater cartilage volume loss and no significant difference in knee pain compared to patients ...

Researchers uncover new agents

March 9, 2017
Mayo Clinic researchers have uncovered three new agents to add to the emerging repertoire of drugs that aim to delay the onset of aging by targeting senescent cells - cells that contribute to frailty and other age-related ...

Improvements in ACL surgery may help prevent knee osteoarthritis

February 21, 2017
Injury to the anterior cruciate ligament (ACL) in the knee frequently leads to early-onset osteoarthritis, a painful condition that can occur even if the patient has undergone ACL reconstruction to prevent its onset. A new ...

New technique for repairing knee cartilage damage

May 25, 2017
Dear Mayo Clinic: I'm interested in the new procedure approved by the U.S. Food and Drug Administration that can repair cartilage in the knee. How does it work? Who's a good candidate for this procedure?

Recommended for you

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.