A perturbed skin microbiome can be 'contagious' and promote inflammation, study finds

June 29, 2017 by Katherine Unger Baillie, University of Pennsylvania
An infection with the Leishmania parasite dramatically altered the skin microbiome in mice, according to a new study. Credit: University of Pennsylvania

Even in healthy individuals, the skin plays host to a menagerie of bacteria, fungi and viruses. Growing scientific evidence suggests that this lively community, collectively known as the skin microbiome, serves an important role in healing, allergies, inflammatory responses and protection from infection.

In a new study, researchers at the University of Pennsylvania have shown for the first time that, not only can infection with the Leishmania parasite alter the skin microbiome of affected mice, but this altered microbial community can be passed to uninfected mice that share a cage with the infected animals.

Mice with the perturbed microbiome, or dysbiosis, had heightened inflammatory responses and more severe disease when they were subsequently infected with Leishmania. The findings are published in the journal Cell Host & Microbe.

"To my knowledge, this is the first case where anyone has shown that a pre-existing skin microbiome can influence the outcome of an infection or a disease," said Elizabeth Grice, co-senior author and assistant professor in the departments of Dermatology and Microbiology in Penn's Perelman School of Medicine. "This opens the door to many other avenues of research."

In addition, when the researchers examined samples from human Leishmania patients, they found similar patterns of dysbiosis as in the infected mice, a hint that the findings may extend to people.

"The transmission of dysbiosis in the skin from one animal to another is a key finding," said Phillip Scott, professor of immunology in the Department of Pathobiology in Penn's School of Veterinary Medicine and co-senior author on the study. "And the fact that we saw similar patterns of dysbiosis in humans suggests there could be some very practical implications of our work when it comes to treating people with leishmaniasis."

Grice and Scott collaborated with researchers from Penn Medicine and Penn Vet, including lead author Ciara Gimblet, a Ph.D. student in Scott's lab, and colleagues from Brazil's Oswaldo Cruz Foundation.

Cutaneous leishmaniasis is a tropical disease caused by a parasite and transmitted by the bite of a sand fly. The disease results in sores on the skin, which can sometimes become severe and disfiguring. There is no vaccine for the disease and the limited drugs available often fail to provide a complete cure.

Curious about the influence of the skin microbiome on the disease, the Penn-led team swabbed the skin of 44 Leishmania patients, analyzing the microbiota not only of their lesions but also the area around them and a portion of skin on the opposite side of the bodies as the lesion. They noticed that the lesion samples contained less bacterial diversity than the samples of other skin sites. But not all of them were the same; they found three distinct community types: one dominated by Staphylococcus, one by Streptococcus and one that was mixed.

To get a clearer picture of how these microbiome shifts were connected to the disease, the researchers turned to a mouse model of Leishmania infection. Mirroring the findings in humans, the team found that infection with the Leishmania parasite induced a change in the skin microbiota in mice. They also found an association between the microbiota community type and disease severity. In mice that eventually resolved their infections, Staphylococcus dominated in the lesions, while Streptococcus was the dominant species in lesions on mice with a persistent, severe form of the disease.

A major discovery was that these shifts in microbiota were transmissible not only to other parts of the same mouse but to cage mates. When they kept mice infected with Leishmania in the same cage as uninfected mice for six weeks, the uninfected mice acquired a perturbed skin microbiome "profile" that resembled the infected mice.

The researchers hope to see whether the sharing of perturbed microbiota happens not just in mouse cages but also in households.

"I think an important next step will be to see if this sharing of microbiota occurs in people, and whether that could be a factor in affecting the severity of infections in humans," Grice said.

A final question was to determine whether this naturally transmitted dysbiosis would predispose the uninfected animals' response to an enhanced inflammatory response. And indeed, when infected with Leishmania, these mice had more severe inflammation and skin ulcers than mice with unperturbed skin microbiota. In a more general assay, the researchers used a contact hypersensitivity assay, which uses a skin irritant to elicit an immune response, on the mice that had been housed with Leishmania-infected mice. These dysbiotic , too, had a heightened inflammatory response.

To follow up on their findings, the researchers hope to examine whether sharing of a dysbiosis occurs in other infections and whether the resulting alteration in skin microbiota affect processes such as wound healing.

In addition, the Penn researchers will be working with their colleagues in Brazil to further examine the connections between the microbiome and leishmaniasis. Specifically, they hope to determine whether there is a connection between the type of skin microbiome present in Leishmania lesions and the severity of disease, or the responsiveness to treatment.

If true, "this may make us rethink the role of antibiotics in treating leishmaniasis," Scott said.

Though previous studies are mixed about the effectiveness of antibiotics in alleviating the , additional information about the microbes that exacerbate inflammation could lead to more tailored therapies to tame lesions.

Explore further: Vet team identifies new therapeutic targets for tropical disease leishmaniasis

More information: Ciara Gimblet et al, Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation, Cell Host & Microbe (2017). DOI: 10.1016/j.chom.2017.06.006

Related Stories

Vet team identifies new therapeutic targets for tropical disease leishmaniasis

February 24, 2017
Each year, about 2 million people contract leishmaniasis, a parasitic disease transmitted by the bite of a sand fly. The cutaneous form of the disease results in disfiguring skin ulcers that may take months or years to heal ...

Study details impact of antibiotics, antiseptics on skin microbiomes

June 20, 2017
The use of topical antibiotics can dramatically alter communities of bacteria that live on the skin, while the use of antiseptics has a much smaller, less durable impact. The study, conducted in mice in the laboratory of ...

Sandfly spit vaccinates mice against leishmaniasis infection

November 3, 2016
A vaccine against cutaneous leishmaniasis, a skin infection caused by Leishmania parasites, may be spitting distance away—sand fly spit, that is. Saliva from a species of the fly responsible for transmitting leishmaniasis ...

Penn Vet study shows immune cells in the skin remember and defend against parasites (Update)

July 27, 2015
Just as the brain forms memories of familiar faces, the immune system remembers pathogens it has encountered in the past. T cells with these memories circulate in the blood stream looking for sites of new infection.

Single fungus amplifies Crohn's disease symptoms

June 21, 2017
A microscopic fungus called Candida tropicalis triggered gut inflammation and exacerbated symptoms of Crohn's disease, in a recent study conducted at Case Western Reserve University School of Medicine.

Changes in gut microbiota after unhealthy diet may protect from metabolic disease

March 17, 2017
An unhealthy diet changes the composition of the gut flora and it is generally assumed that this maladaptation called "dysbiosis" triggers disease. A study by Matteo Serino and his colleagues at the Université Paul Sabatier ...

Recommended for you

Researchers make significant discovery around how inflammation works

April 23, 2018
A research team from Queen's University Belfast, in collaboration with an international team of experts, have made ground-breaking insights into how inflammatory diseases work.

Analysis of 32 studies shows preschool, daycare do not raise asthma risk

April 10, 2018
A study that involved combing through more than 50 years of data to assess the link between asthma and daycare and preschool attendance may provide welcome reassurance to working parents. Early child care does not boost children's ...

New drug therapy could lead to more effective treatment for millions with asthma

February 7, 2018
Rutgers New Jersey Medical School researchers identified a new treatment that could lead to more effective drug therapy for millions of individuals with asthma and other respiratory disorders such as chronic obstruction pulmonary ...

Chronic inflammation causes loss of muscle mass during aging

January 12, 2018
People start losing muscle mass at the age of 40—about some 10 percent of the total muscle mass for each 10-year period, which may lead to fall-related injuries, slowing metabolism and reduced quality of life. Today, very ...

Breathing exercises help asthma patients with quality of life

December 13, 2017
A study led by the University of Southampton has found that people who continue to get problems from their asthma, despite receiving standard treatment, experience an improved quality of life when they are taught breathing ...

Study highlights the need for research into prevention of inflammatory bowel disease

December 7, 2017
Countries in Africa, Asia, the Middle East and South America have seen a rise in incidence of inflammatory bowel disease as they have become increasingly industrialised and westernised, a new study has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.