Cancer research: 3-D models accommodate better precision in drug discovery

August 10, 2017 by Karen Bengston
Sigrid Langhans, PhD and colleagues at Nemours and the University of Delaware have developed a process to apply 3-D tumor cell cultures in high throughput screening labs, to spur more meaningful drug discovery. Credit: Cindy Brodoway

The field of cancer research is moving rapidly toward three-dimensional (3D) laboratory cultures because 3D models can speed drug discovery and better predict the efficacy of using certain drug therapies. Just 1% of drugs investigated ever make it through the gamut of testing and approval to market. Technology that accommodates better precision in drug discovery and treatment is now being pursued with intensity.

A traditional two-dimensional (2D) culture is a flat monolayer grown in a plastic dish, which, while containing tumor cells, does not necessarily mimic the three-dimensional nature of a tumor. In other words, 2D doesn't reflect the human body. Think of a sheet of tissue versus a ball of tissue. The ball more accurately represents the tumor's composition and in vivo conditions.

One of the problems with applying 3D cell cultures to has been the incompatibility of 3D models with high throughput screening (HTS) techniques in place in drug labs. Research in bridging this gap is hot as scientists, engineers and physicians work together to develop ways to connect 3D models and HTS to lead to more meaningful drug discovery.

The advantage of the new process is that it allows greater predictability of the effectiveness and toxicity of certain drug therapies before the drugs move into clinical trials which, in turn, is expected to lower the attrition rate of new medicines under development. Because the 3D models offer a more in vivo-like context, researchers will be able to re-visit drug therapies that may have been ruled out or overlooked in the past using 2D models.

Nemours Biomedical Research and the University of Delaware (UD) Department of Materials Science and Engineering have developed a patent-pending process to make 3D models work in HTS labs, allowing drug discovery to move into more meaningful screening systems. Sigrid Langhans, PhD, of Nemours, along with Darrin Pochan, PhD, of the University of Delaware and colleagues, published an article about their findings this week in Analytical Biochemistry.

Dr. Langhans, Head of the HTS Lab at Nemours, says the new process can mimic the physical properties of tumors and signaling pathways, which vary greatly between 2D and 3D models. Many drugs never make it to market because labs are not using appropriate models. The process is a simple one with broad applicability and no need for additional specialized equipment. Her focus at Nemours is on - specifically medulloblastoma - but she says many labs will be able to duplicate the process to look into other types of pediatric and adult cancers. "The technology is simple and can be tuned and adapted so that it's broadly applicable in other labs," she said.

Glioblastoma, the form of brain cancer that Sen. John McCain has, is aggressive and hard to treat in adults. It is also one of those tumors where 3D culture technologies hold great promise. There is potential, Langhans said, for the Nemours/UD process to further research and treatment if investigators are able to generate more models for glioblastoma and thus speed the discovery of more therapy options.

Explore further: New brain cancer drug targets revealed

Related Stories

New brain cancer drug targets revealed

July 5, 2017
Researchers from Case Western Reserve University School of Medicine and The Cleveland Clinic designed a way to screen brain tumor cells and identify potential drug targets missed by other methods. The team successfully used ...

Discovery of new IRAP inhibitors to improve cognitive functions

June 1, 2016
New Rochelle, June 1, 2016-Researchers have discovered three new inhibitors of insulin-regulated aminopeptidase (IRAP), compounds shown to improve cognitive functions in animal models of human disorders. The new inhibitors ...

3-D tumors grown in the lab provide new perspective for cancer drug discovery

October 27, 2016
Understanding how cells within tumors respond to drugs is a critical issue in anticancer drug development. In an article published in Cell Chemical Biology researchers from Uppsala University report a new approach to study ...

New potential treatment for aggressive brain cancer in children

April 11, 2017
Chicago...Using state-of-the-art gene editing technology, scientists from Ann & Robert H. Lurie Children's Hospital of Chicago have discovered a promising target to treat atypical teratoid/rhabdoid tumor (AT/RT) - a highly ...

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.