No guts no glory: Harvesting the microbiome of athletes

August 21, 2017, American Chemical Society

Elite athletes work hard to excel in sports, but they may also get a natural edge from the bacteria that inhabit their digestive tracts. Scientists have now tapped into the microbiome of exceptional runners and rowers, and have identified particular bacteria that may aid athletic performance. The goal is to develop probiotic supplements that may help athletes—and even amateur fitness enthusiasts—recover from a tough workout or more efficiently convert nutrients to energy.

The researchers are presenting their work today at the 254th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features nearly 9,400 presentations on a wide range of science topics.

"When we first started thinking about this, I was asked whether we could use genomics to predict the next Michael Jordan," Jonathan Scheiman, Ph.D., says. "But my response was that a better question is: Can you extract Jordan's biology and give it to others to help make the next Michael Jordan?"

To answer that question, microbes seemed like a good place to start. "We are more than we are human," says Scheiman, who is a postdoctoral fellow in the laboratory of George Church, Ph.D., at Harvard Medical School. "The bugs in our gut affect our energy metabolism, making it easier to break down carbohydrates, protein and fiber. They are also involved in inflammation and neurological function. So perhaps the microbiome could be relevant for applications in endurance, recovery and maybe even mental toughness."

As a first step toward identifying bacteria that support , the researchers collected on a daily basis from 20 athletes training for the 2015 Boston marathon, one week before and one week after the race. "For two weeks I was driving around Boston collecting fecal samples and putting them on dry ice in the car," Scheiman says. "We followed athletes longitudinally to capture how the microbiome changes between performance and recovery."

The researchers sequenced the genomes of the sampled bacteria, using computational metagenomic methods to figure out how many and what types of microbes inhabited the fecal samples. When they compared the pre-race and post-race samples, the researchers found a sudden spike in the population of one particular type of bacteria after the marathon. "This bug's natural function is to break down lactic acid," Scheiman says. During intense exercise, the body produces more lactic acid than usual, which can lead to muscle fatigue and soreness. This bacteria could potentially help with that.

The team has isolated the bacteria from fecal samples and is beginning to evaluate its properties. They've already determined that the bug excels at breaking down lactic acid in a test tube and remains viable after it passes through the digestive system of mice. The researchers are now feeding the bacteria to mice to measure its effects on levels and fatigue.

In another set of experiments, the researchers are comparing the bacteria from ultramarathoners to those found in rowers training for the Olympics. They found a type of bacteria in ultramarathoners that can help break down carbohydrates and fiber—which is key during a 100-mile run—that wasn't present in the rowers, suggesting that different sports may foster niche microbiomes.

Scheiman says that the team plans to launch a company this fall called Fitbiomics. "I would like to think that a year after we launch, we could have a novel probiotic on the market," he says. "But in parallel we'll also be expanding our cohort of elite athletes from numerous sports to generate a larger microbial data and strain bank of novel probiotic candidates. In essence, we're mining the biology of the most fit and healthy people in the world and then extracting that information to help them and others."

Explore further: Researchers find link between gut bacteria and MS

Related Stories

Researchers find link between gut bacteria and MS

June 27, 2016
If asked to list problems that bad gut bacteria can cause, most would likely name digestive issues: constipation, excessive gas, or diarrhea.

Toddler brain development: Bacterial clues found in dirty baby diapers

July 17, 2017
If you're the parent of an infant, diaper duty probably isn't your favorite part of the day. But you dutifully check the contents of each one because your pediatrician told you that color and consistency of what they leave ...

Study suggests gut bacteria can aid recovery from spinal cord injury

October 17, 2016
Researchers from The Ohio State University have discovered that spinal cord injury alters the type of bacteria living in the gut and that these changes can exacerbate the extent of neurological damage and impair recovery ...

Intense training without proper recovery may compromise bone health in elite rowers

April 25, 2017
Bone mineral density, an indicator of bone strength, typically increases with regular exercise, acting as a protective mechanism against bone fractures and osteoporosis. But a new study suggests that the extended, high-intensity ...

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.