Researchers find mechanism involved in novel drug design with potential to treat tuberculosis

October 13, 2017, Instituto de Medicina Molecular
M. tuberculosis phosphatase structure with cysteine residues 11 and 16, that together with a network of water molecules (red) constitute an anti-oxidative shield. Credit: Gonçalo Bernardes Lab, iMM Lisboa

A team of researchers from Instituto de Medicina Molecular (iMM) Lisboa successfully used a new method to chemically modify a protein's components. Their results have potential medical applications and impact in the fight against tuberculosis.

To design , it is essential to understand the that make up proteins of pathogenic bacteria. The team, led by Gonçalo Bernardes, used an innovative methodology that allows protein alteration in its native state, combining organic chemistry, biological computation, biophysics and biochemistry techniques to modify proteins involved in infectious diseases.

Researchers identified a novel molecular mechanism that works as a shield in a family of phosphate proteins that are present in . In particular, the team observed the presence of a structural water molecule in a specific area that protects the protein from being inactivated by oxidative processes.

These results may impact the fields of medical chemistry and molecular medicine because they reveal a novel defence mechanism used by these pathogenic proteins. These findings may prove essential in drug design, particularly to increase specificity, potency and efficacy of future clinical tests.

Highlighted are the amino acids and water molecules presents in the protein's catalytic center, involved in anti-oxidative mechanisms. Credit: Gonçalo Bernardes Lab, iMM Lisboa

More information: DOI: 10.1016/j.chempr.2017.07.009

Related Stories

Recommended for you

Cold can activate body's 'good' fat at a cellular level, study finds

March 21, 2018
Lower temperatures can activate the body's 'good' fat formation at a cellular level, a new study led by academics at The University of Nottingham has found.

Switch discovered to convert blood vessels to blood stem cells in embryonic development

March 20, 2018
A switch has been discovered that instructs blood vessel cells to become blood stem cells during embryonic development in mice. Using single-cell technology, researchers from the Wellcome Sanger Institute in Cambridge and ...

Scientists discover new causes of cellular decline in prematurely aging kids

March 19, 2018
In a recent paper published in Cell Reports, Saint Louis University researchers have uncovered new answers about why cells rapidly age in children with a rare and fatal disease. The data points to cellular replication stress ...

Commonly used drugs affect gut bacteria

March 19, 2018
One in four drugs with human targets inhibit the growth of bacteria in the human gut. These drugs cause antibiotic-like side-effects and may promote antibiotic resistance, EMBL researchers report in Nature on March 19.

Don't blame adolescent social behavior on hormones

March 19, 2018
Reproductive hormones that develop during puberty are not responsible for changes in social behavior that occur during adolescence, according to the results of a newly published study by a University at Buffalo researcher.

Stem cells treat macular degeneration

March 19, 2018
In July 2015, 86-year-old Douglas Waters developed severe age-related macular degeneration (AMD). He struggled to see things clearly, even when up close.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.