Study finds evidence that a protein, MCP-1, may determine bone loss responses to parathyroid hormone

December 7, 2017, New York University

In a new study published in November in Scientific Reports, New York University College of Dentistry (NYU Dentistry) researchers investigating the catabolic effect of parathyroid hormone (PTH) in hyperparathyroidism (HPT) showed, for the first time, that monocyte chemoattractant protein-1 (MCP-1) is required for catabolic responses to PTH. HTP is a condition in which an abnormally high concentration of PTH in the blood accelerates bone loss.

The research team, led by Nicola C. Partridge, PhD, professor and chair of the Department of Basic Science and Craniofacial Biology at NYU Dentistry, had previously found that MCP-1 is important in producing an anabolic effect of PTH, in which formation is increased, and they wanted to know if it was also important in causing a catabolic , in which bone is broken down.

In the present study, the researchers focused on the role of MCP-1 in PTH-induced formation. Osteoclasts are cells that break down the bone. Increased osteoclast formation causes bones to become thinner and weaker. The researchers recreated the hyperparathyroid state in mice by constantly elevating their hyperparathyroid levels. Over a two-week period, they continuously infused female wild-type and MCP-1 knockout mice with human PTH. They showed that the ability of PTH to increase osteoclast formation in vitro is markedly impaired in cells from MCP-1 knockout mice and concluded that MCP-1 is an important chemokine, or signaling protein, in PTH-induced osteoclast formation and bone resorption.

The findings support the possibility that MCP-1 could be a marker for how PTH works in humans with hyperparathyroidism, as elevated serum MCP-1 has been shown to be correlated with elevated serum PTH levels in women. Notably, within minutes after humans undergo parathyroid adenoma surgery, MCP-1 serum levels decrease.

Because high serum levels of MCP-1 cause the white cells and osteoclasts to be stimulated, this process could have systemic effects as well as effects on bone. "MCP-1 is a chemokine, which induces cells to move along a gradient recruiting white cells and osteoclasts in tissues," says Dr. Partridge. "Accordingly, there could also be effects on adipose tissue, the heart, and inflammatory conditions."

In the United States, about 1,000 people develop HPT each year, with osteoporosis the most common manifestation. According to the National Institutes of Health, there are approximately 1.5 million osteoporotic fractures in the U.S. each year that lead to half a million hospitalizations, over 800,000 emergency room encounters, more than 2,600,000 physician office visits, and the placement of nearly 180,000 individuals in nursing homes. Hip fractures are by far the most devastating type of fracture, accounting for about 300,000 hospitalizations each year. About one in five people sustaining a hip fracture ends up in a nursing home.

Explore further: Choloroquine reduces formation of bone resorbing cells in murine osteoporosis

Related Stories

Choloroquine reduces formation of bone resorbing cells in murine osteoporosis

December 9, 2013
Bone homeostasis requires precise balance between deposition of new bone by osteoblasts and resorption of old bone by osteoclasts. Bone diseases, including osteoporosis and rheumatoid arthritis, are the result of increased ...

Non-coding RNA molecule could play a role in osteoporosis

March 28, 2017
Researchers from Hong Kong Baptist University and colleagues have demonstrated that a molecule called miR-214-3p plays a role in inhibiting bone formation. MiR-214-3p is a microRNA (miRNA): a non-coding RNA involved in regulating ...

Researchers discover gene that slows bone loss and promotes bone formation

August 12, 2014
(Medical Xpress)—Osteoporosis and aging-related bone loss is debilitating and painful. With a greater understanding of Wnt4 signaling, researchers are now closer to developing therapeutic agents that could slow down bone ...

Balancing bone formation and degradation key to osteoporosis treatment

February 12, 2015
Most existing treatments for pathological bone loss inhibit osteoclasts (bone-destroying cells) to limit bone degradation. However, by doing this, they also prevent bone formation since it is stimulated by the presence of ...

Potential early warning signs of osteoporosis found in South Asian women

March 21, 2017
Pre-menopausal South Asian women could be more at risk of developing osteoporosis in later life than white Caucasian women, a new study in the journal Bone reports.

Recommended for you

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

New study finds that fat consumption is the only cause of weight gain

July 13, 2018
Scientists from the University of Aberdeen and the Chinese Academy of Sciences have undertaken the largest study of its kind looking at what components of diet—fat, carbohydrates or protein—caused mice to gain weight.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.