Sensor-enhanced surgical robot enables highly precise and safe spinal operations

December 21, 2017, University of Bern
Spine model with four pedicle screws for spine stabilization. Credit: Pascal Gugler for Insel Gruppe AG

Researchers from the University of Bern, Inselspital, Bern University Hospital and the Swiss Center for Electronics and Microtechnology develop a high-precision, sensor-based surgical robot for spinal operations together with industry partners. Their project is being funded with two million Swiss francs, sponsored by the "BRIDGE" programme of the Swiss National Science Foundation and the Commission for Technology and Innovation.

Within the scope of the project, titled "Towards Intelligent Sensor-enhanced Robotic Neurosurgery," Andreas Raabe from the Department of Neurosurgery at Inselspital and colleagues are developing a new sensor-enabled surgical which provides a new level of safety for complicated spinal operations.

Spine as "uneven terrain"

Manual spine stabilisation surgery is one of the most frequent back surgeries performed and numbers rising with an ageing population requiring more and more surgical procedures to address degenerative spine disease. The challenge of manual spine surgery using so-called pedicle screws to fuse and stabilise functionally unstable vertebrae is the "uneven terrain" of vertebral bone. The functional articulation of the human vertebral spine that confers lateral and rotational mobility, static stability and compressional strength is only possible because vertebrae have a complex shape and bone density composition. Drilling and positioning a screw into a highly variable part of the spine, whether manually or with image guidance technologies fails to be a success around 15 percent of the time. The screw misses the central part of the vertebrae and the sharp tip sticks out, in many cases to irritate surrounding tissue or nerves.

Screws on the upper cervical spine past the posterior carotid artery. Credit: Computer tomography (CT) 3D-Reconstruction, Department of Neurosurgery at Inselspital, Bern University Hospital

Perfect placement every time

Sensor-enabled surgical robotic drilling technology turns the variability of the vertebrae from a surgical challenge into the basis of precision surgical procedures. By using the complexity of vertebral anatomy like a "sensor map" the robotic drill is able to "feel" across the bone terrain and together with so-called Electromyography (EMG) neuromonitoring can avoid obstacles including nerves and boundaries of the bone. Thicker bone, thinner bone and nerves are sensed with super-human, robotic perception and verified at high speed with the relevant information from the imaging information that was established before the procedure. This way the surgical robotic technology potentially allows the neurosurgeon to place pedicle screws perfectly and with precision in every patient, every time.

The aim of this project is to introduce this augmented, robotic technology into the clinic and begin the process of clinical adoption of the next generation of neurosurgical interventions.

"For the first time the neurosurgeon has real-time data on where the drilling instrument is during the procedure and the surgical robot acts with supreme accuracy shutting down the drilling far sooner that a human operator could, thereby avoiding breakthrough or injury. This means potentially zero morbidity procedures with respect to pedicle screw misplacement. We see this as the future of surgery," commented Andreas Raabe.

"The use of EMG as a cross check control loop to give early warning on the proximity of nerve tissue and the overall integration of a sensor-driven surgical robotic system is a ground-breaking use of this technology in neurosurgery and will lead to many other clinical applications going forward," said Olivier Chételat. Neurosurgery is an integral part of the Swiss Institute for Translational and Entrepreneurial Medicine sitem-insel AG in Bern. This project represents a first promising cooperation with the CSEM in this area.

"We are honoured to have been selected in this first cohort of the "BRIDGE Discovery' call. It is testament to our research focus on clinical needs and the translation of biomedical research, a priority of Bern as a medical center. We are excited to introduce completely new technology concepts like EMG and force-density pose estimation into for the first time. We believe that it is our duty to leverage new knowledge in biomedical engineering into surgical technology that brings the best possible clinical care to patients," said Stefan Weber.

Explore further: Research studies highlight advantages and potential of computer-guided spinal surgery

Related Stories

Research studies highlight advantages and potential of computer-guided spinal surgery

April 3, 2014
In a series of research studies, Cedars-Sinai spinal surgeons show that a new method of computer-guided spine surgery is beneficial for spinal reconstruction and for treating complex tumors and degenerative spine problems, ...

'Lifelike' 3D printed spine to help train spinal surgeons

October 4, 2017
Researchers are 3-D printing replica human vertebrae which act and feel like real bone tissue to help train spinal surgeons before they go into live operations.

Innovative 'false pedicle' surgery allows for advanced spinal/pelvic reconstruction

March 27, 2014
A multidisciplinary team at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital & Richard J. Solove Research Institute (OSUCCC – James) has pioneered a new surgical technique using ...

Safer bone surgery thanks to a drill bit that protects soft tissue

September 11, 2017
Surgical drills, commonly used in the surgery of the head, spine, extremities and in dental operations, may damage the soft tissue near the bone. It is estimated that complications associated with surgical drills cause costs ...

Recommended for you

Drug may help surgical patients stop opioids sooner

December 13, 2017
(HealthDay)—Opioid painkillers after surgery can be the first step toward addiction for some patients. But a common drug might cut the amount of narcotics that patients need, a new study finds.

Children best placed to explain facts of surgery to patients, say experts

December 13, 2017
Getting children to design patient information leaflets may improve patient understanding before they have surgery, finds an article in the Christmas issue of The BMJ.

Burn victim saved by skin grafts from identical twin (Update)

November 23, 2017
A man doomed to die after suffering burns across 95 percent of his body was saved by skin transplants from his identical twin in a world-first operation, French doctors said Thursday.

Is a common shoulder surgery useless?

November 21, 2017
(HealthDay)—New research casts doubt on the true effectiveness of a common type of surgery used to ease shoulder pain.

Study shows electric bandages can fight biofilm infection, antimicrobial resistance

November 6, 2017
Researchers at The Ohio State University Wexner Medical Center have shown - for the first time - that special bandages using weak electric fields to disrupt bacterial biofilm infection can prevent infections, combat antibiotic ...

Obesity increases incidence, severity, costs of knee dislocations

November 3, 2017
A new study of more than 19,000 knee dislocation cases in the U.S. between 2000 and 2012 provides a painful indication of how the nation's obesity epidemic is changing the risk, severity and cost of a traumatic injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.