Researchers validate five new genes responsible for Amyotrophic Lateral Sclerosis

December 1, 2017, St. Joseph's Hospital and Medical Center
Credit: CC0 Public Domain

Barrow Neurological Institute researchers have completed additional experiments that validate the identification of five new genes linked to Amyotrophic Lateral Sclerosis (ALS) - also known as Lou Gehrig's disease. The new study results, validated through five different methods, were published in a full length manuscript in Acta Neuropathologica, validating earlier findings in the project.

ALS is a fatal neurological disorder affecting more than 220,000 patients worldwide1 with no cures and few treatments. Dr. Robert Bowser, who led the research, directs the Gregory W. Fulton ALS Research Center at Barrow, located at Dignity Health St. Joseph's Hospital and Medical Center and considered one of the world's leading neuroscience centers.

Dr. Bowser's team used technologies provided by IBM Watson Health, including Watson for Drug Discovery, a novel research platform that harnesses the text of more than 28 million MEDLINE abstracts and other data sources. The solution applies advanced natural language processing, machine learning and predictive analytics to identify new relationships between genes, proteins, drugs and disease.

"Further validating and expanding on our earlier findings has been exciting, because in research of this nature, time is of the essence," says Dr. Bowser, one of the nation's top ALS researchers. "We could have individually looked at the 1,500 proteins and genes but it would have taken us much longer to do so. These findings inspire hope that, with this technology, we may someday identify new and more effective treatments for ALS."

This research is important because it demonstrates the ability of artificial intelligence algorithms to accelerate wet lab research discoveries. It also provides further evidence that RNA metabolism plays an important role in ALS.

More than 30 genes have been linked to ALS, and mutations in the 11 genes that encode RNA binding proteins cause familial forms of ALS. These RNA binding proteins play a critical role in how genes encoded within the DNA in every cell are converted to the proteins that perform all the functions within a cell. Alterations in these proteins can lead to altered RNA metabolism and the generation of toxic aggregates within motor neurons that contribute to motor dysfunction and ultimately paralysis and death.

A person's DNA encodes for over 1,500 RNA binding proteins, and it is unknown if other RNA binding proteins may contribute to ALS. With so many RNA binding proteins encoded in our genome, the cost and time required to examine all these RNA binding proteins would prohibitive. The Barrow laboratory studied whether IBM Watson for Drug Discovery could accelerate the identification of additional RNA binding proteins linked to ALS by helping scientists focus research efforts on the proteins that Watson ranked high and predicted to be altered in ALS.

Dr. Bowser and his team provided a list of 11 RNA binding proteins with known mutations that cause ALS. Watson for Drug Discovery used the list of proteins and cross referenced medical literature from 28 million MEDLINE abstracts to rank order all other 1,500 RNA binding proteins encoded by our genome to attempt to identify new RNA binding proteins linked to ALS.

The Barrow team validated the top 10 RNA binding proteins using five different methods that included use of patient tissue samples and patient derived stem cells differentiated into motor neurons. They also examined a smaller set of RNA binding proteins near the bottom of the list to demonstrate that any changes detected in the top 10 were not observed for those at the bottom of the list, demonstrating the ability of Watson for Drug Discovery to correctly predict RNA binding proteins linked to ALS.

The results were groundbreaking - and a painstaking process that would have taken researchers years was completed in only a few months.

Eight of the top 10 candidates were successfully validated and shown to be altered in ALS. Five of these genes had never been examined in ALS, indicating that IBM's artificial intelligence platform could predict novel and proteins linked to this disease. RNA binding proteins at the bottom of the list were not altered in ALS.

By accelerating cell biological research, scientists hope to speed the discovery of new therapies for ALS.

Explore further: Team identifies new genes responsible for ALS using IMB Watson Health

Related Stories

Team identifies new genes responsible for ALS using IMB Watson Health

December 14, 2016
Barrow Neurological Institute and IBM Watson Health today announced results of a revolutionary study that has identified new genes linked to Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease. The discovery ...

ALS study reveals role of RNA-binding proteins

October 20, 2016
Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Recommended for you

Once-mysterious 'Atacama Skeleton' illuminates genetics of bone disease

March 22, 2018
The skeleton, discovered in a leather pouch behind an abandoned church, was pristine: a tiny figure, just six inches long, with a cone-shaped head, 10 pairs of ribs, and bones that looked like those of an eight-year-old child. ...

Early life experiences influence DNA in the adult brain

March 22, 2018
In the perennial question of nature versus nurture, a new study suggests an intriguing connection between the two. Salk Institute scientists report in the journal Science that the type of mothering a female mouse provides ...

Study reveals startlingly different tissue sensitivities to cancer-driving genes

March 22, 2018
New research led by Harvard Medical School and Brigham and Women's Hospital has unmasked hundreds of cancer-driving genes and revealed that different tissue types have shockingly variable sensitivities to those genes.

Does genome sequencing increase downstream costs?

March 22, 2018
As genome sequencing enters the clinic, fears have arisen about its potential to motivate follow-up testing and ongoing screening that could drastically increase health care spending. But few studies have quantified the downstream ...

First 'non-gene' mutations behind neurodevelopmental disorders discovered

March 21, 2018
In the largest study of its kind, genetic changes causing neurodevelopmental disorders have been discovered by scientists at the Wellcome Sanger Institute and their collaborators in the NHS Regional Genetics services. The ...

Two genes likely play key role in extreme nausea and vomiting during pregnancy

March 21, 2018
Most women experience some morning sickness during pregnancy, but about 2 percent of pregnant women experience a more severe form of nausea and vomiting.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.