Why certain cancer therapeutics may bind—or fail to bind—to mutant proteins

January 16, 2018, Agency for Science, Technology and Research (A*STAR), Singapore
Why certain cancer therapeutics may bind — or fail to bind — to mutant proteins
Molecular simulation of afatinib (magenta) bound to EGFR19del (gray), with a single water molecule (red sphere) mediating interactions (dotted line) between the drug and the protein. Other mutation-prone amino acids within the drug-binding pocket are individually colored. Credit: A*STAR Bioinformatics Institute

A single molecule of water is the reason certain mutations are more responsive to a 'targeted' cancer therapy, according to molecular-scale simulations carried out at the A*STAR Bioinformatics Institute.

Targeted therapies that take down tumors by selectively interfering with the defective proteins that promote their survival and growth have revolutionized . For example, the drug afatanib is a targeted agent given to with certain mutations in the gene encoding the epidermal growth factor receptor (EGFR). Recent clinical studies suggest that afatanib may confer survival benefit specifically in patients with the EGFR19del mutation rather than in patients with a different mutation, known as EGFRL858R, when compared with receiving only standard chemotherapy.

Daniel Shao-Weng Tan, a clinical oncologist from A*STAR's Genome Institute of Singapore and the National Cancer Center of Singapore, who participated in these trials in Singapore, was confounded by this disparity, so he consulted scientist Chandra Verma at the Bioinformatics Institute to rationalize their findings. Verma and Srinivasaraghavan Kannan, a specialist in molecular modeling at the Bioinformatics Institute, teamed up with Tan to identify differences in the structure and dynamic behavior of these two mutant proteins that might explain the distinct response profiles.

It turns out that the critical difference was a mere molecule of water. Afatanib binds to a pocket on EGFR that is missing five amino acids in the EGFR19del mutant. Molecular dynamics simulations carried out at the Bioinformatics Institute and the National Supercomputing Centre, Singapore, showed that this deletion creates a more physically constrained structure, which can snugly accommodate both afatanib and a single water molecule in a very stable arrangement. In contrast, the mutant EGFRL858R, also found to characterize lung , contains just a single amino acid substitution, and is predicted to hold two water molecules in its pocket. However, these are in a weaker and relatively less stable arrangement, resulting in weakened interactions with afatanib that likely reduce the drug's affinity and hence effectiveness.

"Our hypothesis is based on understanding the physics of the system and could offer a compelling rationale for the clinical observations with afatanib," says Kannan. Intriguingly, he and Verma were also able to home in on other binding pocket mutations (single nucleotide polymorphisms, or 'SNPs') that occur alongside EGFR19del that might likewise influence the efficacy of afatanib.

The researchers are now examining whether these predictions hold in real-life experiments and see this as a promising general strategy for predicting patient response to targeted treatments. "We are trying to develop a robust pipeline to examine the structural effects of on drug interactions," Kannan says. "This will be a very valuable approach to complement our engagement with the national precision medicine efforts."

Explore further: Investigators match novel cancer mutations with potential therapies

More information: Srinivasaraghavan Kannan et al. Hydration effects on the efficacy of the Epidermal growth factor receptor kinase inhibitor afatinib, Scientific Reports (2017). DOI: 10.1038/s41598-017-01491-z

Related Stories

Investigators match novel cancer mutations with potential therapies

August 4, 2017
Research led by Vanderbilt-Ingram Cancer Center (VICC) investigators may have solved a mystery about why a targeted therapy stops working in a small group of breast cancer patients.

Osimertinib improves progression-free survival in patients with EGFR mutated lung cancer

September 11, 2017
Osimertinib improves progression-free survival by 54% compared to standard first line therapy in patients with EGFR mutated non-small-cell lung cancer (NSCLC), according to late-breaking results from the FLAURA trial presented ...

Not all EGFR mutations are the same when it comes to therapy for non-small cell lung cancer

February 10, 2015
Certain rare epidermal growth factor receptor (EGFR) mutations are associated with tobacco smoking, worse prognosis and poor response to EGFR tyrosine kinase inhibitor (TKI) therapy compared to the more common "classical" ...

Cancer drug design targeted by COSMIC's new 3-D system

May 10, 2017
COSMIC-3D, the most comprehensive system for exploring cancer mutations in three dimensions, is launched today by COSMIC, based at the Wellcome Trust Sanger Institute, in collaboration with Astex Pharmaceuticals, Cambridge, ...

targeted therapy can delay recurrence of intermediate-stage lung cancer

May 18, 2017
The targeted therapy gefitinib appears more effective in preventing recurrence after lung cancer surgery than the standard of care, chemotherapy. In a phase III clinical trial, patients with epidermal growth factor receptor ...

Recommended for you

Researchers identify blood biomarkers that may help diagnose, confirm concussions

April 20, 2018
Researchers from the University of California, Irvine, Georgetown University and the University of Rochester have found that specific small molecules in blood plasma may be useful in determining whether someone has sustained ...

Stem-cell technology aids 3-D printed cartilage repair

April 20, 2018
Novel stem-cell technology developed at Swinburne will be used to grow the massive number of stem cells required for a new hand-held 3-D printer that will enable surgeons to create patient-specific bone and cartilage.

DOR protein deficiency favors the development of obesity

April 20, 2018
Obesity is a world health problem. Excessive accumulation of fat tissue (adipose tissue) increases the risk of cardiovascular disease, hypertension, diabetes and some types of cancer. However, some obese individuals are less ...

Defect in debilitating neurodegenerative disease reversed in mouse nerves

April 19, 2018
Scientists have developed a new drug compound that shows promise as a future treatment for Charcot-Marie-Tooth disease, an inherited, often painful neurodegenerative condition that affects nerves in the hands, arms, feet ...

Enduring cold temperatures alters fat cell epigenetics

April 19, 2018
A new study in fat cells has revealed a molecular mechanism that controls how lifestyle choices and the external environment affect gene expression. This mechanism includes potential targets for next-generation drug discovery ...

Molecule that dilates blood vessels hints at new way to treat heart disease

April 19, 2018
Americans die of heart or cardiovascular disease at an alarming rate. In fact, heart attacks, strokes and related diseases will kill an estimated 610,000 Americans this year alone. Some medications help, but to better tackle ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.