Researchers identify gene largely accounting for 15q13.3 microdeletion syndrome

February 2, 2018, Baylor College of Medicine
Credit: CC0 Public Domain

Researchers are closer to solving the puzzle of a complex neurological condition called 15q13.3 microdeletion syndrome. Individuals with this condition are missing a small piece of chromosome 15 that usually contains six genes, but which one of the genes is responsible for the clinical characteristics of patients has not been clear. In this study, a multidisciplinary team of researchers at Baylor College of Medicine and Texas Children's Hospital has identified in a mouse model OTUD7A as the gene within the deleted region that accounts for many characteristics of the human condition. The researchers also discovered that mice deficient in the gene Otud7a have fewer dendritic spines, small protrusions involved in neuron communication, which might be related to the neurological deficits. The report appears in the American Journal of Human Genetics.

"Identifying the gene within a deleted region of a chromosome that accounts for the clinical characteristics we see in is very important," said senior author Dr. Christian Schaaf, assistant professor of molecular and human genetics at Baylor College of Medicine and the Joan and Stanford Alexander Endowed Chair for Neuropsychiatric Genetics at Texas Children's Hospital. "If we want to get to the point where we can treat patients, we need to know which gene or genes to target. That is the big picture question behind this study."

The 15q13.3 microdeletion syndrome is characterized by a wide spectrum of neurodevelopmental disorders, including developmental delay, intellectual disability, epilepsy, language impairment, abnormal behaviors, neuropsychiatric disorders and hypotonia. Schaaf and his colleagues have studied the 15q13.3 microdeletion syndrome for several years trying to answer the question of which gene within that region may account for the patients' characteristics. "We have addressed that question from different standpoints using different kinds of technology," Schaaf said. "One way is with mouse models. We genetically engineer mice to lack a certain gene, and determine whether the animals show any features similar to what we see in the patients. For example, if the patients have epilepsy, we knockout a gene we suspect is involved in epilepsy and determine whether the mice also have the condition."

Of the six genes usually present within the deleted region in 15q13.3 microdeletion syndrome, the gene OTUD7A was considered a strong candidate, as it is one of only two that are always involved in the deletion, based on hundreds of patients studied by Schaaf and his colleagues. To test the relevance of the suspect gene, the researchers genetically engineered mice to lack this gene and observed that the mice indeed had many of the characteristics present in patients. In addition, they discovered that the gene is expressed in and that mice without the gene have fewer dendritic spines than those with it.

"We now have two new pieces of this complex genetic puzzle," Schaaf said. "We found that the gene Otud7a seems to play a major role in many of the neurological problems observed in our mouse model, and that this gene could be considered a therapeutic target for the human condition."

"We also learned that this gene is involved in the regulation of dendritic spine density. Altogether, our findings suggest that a deficiency in the gene OTUD7A is a major contributor to the clinical characteristics associated with the 15q13.3 microdeletion syndrome via changes in the number of dendritic spines and their activity," he said.

Schaaf and his colleagues think that the Otud7a knockout mouse line they have engineered would be a valuable resource to other researchers who wish to study this condition further. They have deposited the mouse line with the Jackson Laboratory for immediate availability.

Explore further: How having too much or too little of CHRNA7 can lead to neuropsychiatric disorders

More information: Jiani Yin et al, Otud7a Knockout Mice Recapitulate Many Neurological Features of 15q13.3 Microdeletion Syndrome, The American Journal of Human Genetics (2018). DOI: 10.1016/j.ajhg.2018.01.005

Related Stories

How having too much or too little of CHRNA7 can lead to neuropsychiatric disorders

November 28, 2017
Studying the genetic code allows researchers to know whether some patients with neuropsychiatric disorders either have extra copies of the CHRNA7 gene or are missing copies. However, little was known about the functional ...

Gene ABL1 implicated in both cancer and a developmental disorder

March 14, 2017
ABL1, a human gene well-known for its association with cancer now has been linked to a developmental disorder. The study, which was carried out by a team of researchers from institutions around the world, including Baylor ...

CRKL in 22q11.2; a key gene that contributes to common birth defects

May 25, 2017
The 22q11.2 region of human chromosome 22 is a hotspot for a variety of birth defects. Scientists learned about this region because it is deleted in about 1 in 4,000 births, causing the loss or duplication of up to 40 genes. ...

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Genetic cause identified for previously unrecognized developmental disorder

December 22, 2016
An international team of scientists has identified variants of the gene EBF3 causing a developmental disorder with features in common with autism. Identification of these gene variants leads to a better understanding of these ...

Unexplained developmental disorder linked to gene involved in essential cellular processes

August 18, 2016
A neurodevelopmental disorder for which there was no known cause has been linked to SON, a gene that is involved in essential mechanisms a cell uses to translate DNA into protein, as well as in DNA replication and cell division. ...

Recommended for you

New algorithm could improve diagnosis of rare diseases

August 17, 2018
Today, diagnosing rare genetic diseases requires a slow process of educated guesswork. Gill Bejerano, Ph.D., associate professor of developmental biology and of computer science at Stanford, is working to speed it up.

Gene silencing critical for normal breast development

August 17, 2018
Researchers have discovered that normal breast development relies on a genetic 'brake', a protein complex that keeps swathes of genes silenced.

Officials remove special rules for gene therapy experiments

August 16, 2018
U.S. health officials are eliminating special regulations for gene therapy experiments, saying that what was once exotic science is quickly becoming an established form of medical care with no extraordinary risks.

Genetic link discovered between circadian rhythms and mood disorders

August 15, 2018
Circadian rhythms are regular 24-hour variations in behaviour and activity that control many aspects of our lives, from hormone levels to sleeping and eating habits.

Ovarian cancer genetics unravelled

August 14, 2018
Patterns of genetic mutation in ovarian cancer are helping make sense of the disease, and could be used to personalise treatment in future.

New genome-editing strategy could lead to therapeutics

August 14, 2018
Researchers at UMass Medical School have developed a genome-editing strategy to correct disease-causing DNA mutations in mouse models of human genetic diseases, according to research published in the Aug. 18 edition of Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.