Microfluidic device captures, allows analysis of tumor-specific extracellular vesicles

February 27, 2018, Massachusetts General Hospital
Microfluidic device captures, allows analysis of tumor-specific extracellular vesicles
Schematic image showing how the antibody-coated surfaces of the EVHB-Chip capture red- and green-labeled tumor-specific extracellular vesicles from patient serum or plasma. Credit: Eduardo Reátegui, PhD, Center for Engineering in Medicine, Massachusetts General Hospital

A new microfluidic device developed by investigators at Massachusetts General Hospital (MGH) may help realize the potential of tumor-derived extracellular vesicles (EVs) - tiny lipid particles that carry molecules through the bloodstream - as biomarkers that could monitor a tumor's response to therapy and provide detailed information to guide treatment choice. In their report published earlier this year in Nature Communications, the team from the MGH Center for Engineering in Medicine (MGH-CEM) describes how EVs captured from serum or plasma samples of patients with the dangerous brain tumor glioblastoma multiforme (GBM) provided detailed, tumor-specific genetic and molecular information.

"Glioblastoma is a highly fatal disease with few treatment options," says senior author Shannon Stott, PhD, of the MGH Cancer Center and the BioMEMS Resource Center in the MGH-CEM. "Due to the tumor's location, it has been challenging to get dynamic, real-time , which limits the ability to determine tumor progression and to match patients with the most promising new therapies. Our device's ability to sort tumor-specific EVs out from the billions of EVs carried through the bloodstream may lead to the development of much-needed diagnostic and monitoring tools for this and other hard-to-treat cancers."

Previous technologies designed to isolate EVs were limited in their ability to distinguish tumor EVs from those carrying molecules from non-malignant cells. More specific approaches using tumor-specific antibodies were time-consuming and cumbersome or did not capture sufficient numbers of tumor-specific EVs from a sample. Other "liquid biopsy" technologies designed to capture tumor cells and molecules - such as several circulating tumor cell (CTC)-isolating devices developed by member of the MGH team - may be limited in their ability to monitor brain tumors throughout treatment. Since these potential biomarkers may not consistently pass through the blood brain barrier, their presence at the time a blood sample is drawn may be limited.

Extracellular vesicles (red) released from a patient's tumor and captured on the surfaces of the EVHB-Chip. Credit: Shannon Stott, PhD, Center for Engineering in Medicine, Massachusetts General Hospital

Stott's team combined features of the CTC-detecting HB-Chip, which she helped to develop, with features specific to the capture of EVs. The surfaces through which a sample is passed are optimized to the physical properties of EVs - which are thousands of times smaller than cells - and contain a "cocktail" of antibodies against proteins highly expressed on GBM cells. The team also identified factors that increased the number of tumor-specific EVs captured from a sample and developed methods for releasing EVs from the device while preserving their contents for detailed analysis. Taking this approach, their device can isolate as few as 100 nanometer-sized vesicles in a one-microliter droplet of plasma.

Using the new device, dubbed the EVHB-Chip, the researchers analyzed serum or plasma samples from 13 patients with GBM and 6 control samples from healthy donors. The EVHB-Chip isolated tumor-specific EVs from all 13 patients, and identified the EGFRvIII mutation in 5 of 6 patients tested for that mutation. The captured EVs also identified genes present in the four characteristic subtypes of GBM and revealed the upregulation of more than 50 cancer-associated genes, some not previously observed in GBM EVs.

An assistant professor of Medicine at Harvard Medical School, Stott notes that the great specificity and sensitivity of the EVHB-Chip allow the use of relatively small blood samples, which would be particularly beneficial for pediatric patients for whom other blood biopsy approaches are not always feasible. The flexibility of the device should allow it to be useful for many types of cancer and, since all cells release EVs into the circulation, for other conditions including infectious diseases, autoimmune diseases, cardiac events and neurodegenerative disorders. Simultaneous investigations of biomarkers provided by EVs, CTCs and circulating DNA should help determine which can be most informative for specific patients and stages of treatment.

Stott notes that the EVHB-Chip was designed to be a low-cost, easy to use device with the hope of rapid translation to the clinic. "We are excited by this early-stage data, and we look forward to scaling the technology and increasing the number of patient samples analyzed. Specifically, we are interested in exploring how these vesicles change over time in response to treatment, and we see our blood-based assay as an ideal way to explore this in brain tumor patients," she says.

Explore further: New method of isolating tumor cells could improve cancer research and treatment

More information: Eduardo Re√°tegui et al, Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles, Nature Communications (2018). DOI: 10.1038/s41467-017-02261-1

Related Stories

New method of isolating tumor cells could improve cancer research and treatment

August 24, 2017
Cells that break away from a cancerous tumor and wander through the body can tell us a lot about the tumor itself, potentially leading to new avenues of research, quicker diagnoses and targeted treatments. The challenge is ...

Developing the VTX-1 liquid biopsy system: Fast and label-free enrichment of circulating tumor cells

January 22, 2018
A new article in the February 2018 issue of SLAS Technology describes a new platform that could change the way cancer is diagnosed and treated by automating the isolation of circulating tumor cells (CTCs) directly from cancer ...

Improved device provides more rapid, comprehensive analysis of circulating tumor cells

March 31, 2010
Technical improvements to a microchip-based device for detecting and analyzing tumor cells in the bloodstream are revealing cellular differences that may reflect a tumor's aggressiveness and long-term response to treatment. ...

New device successfully captures metastasis-associated circulating tumor cell clusters

May 18, 2015
The latest version of a microfluidic device for capturing rare circulating tumor cells (CTCs) is the first designed specifically to capture clusters of two or more cells, rather than single cells. The new device called the ...

A blood test can predict early lung cancer prognosis

August 30, 2017
Cancer cells obtained from a blood test may be able to predict how early-stage lung cancer patients will fare, a team from the University of Michigan has shown.

Circulating tumor cells provide genomic snapshot of breast cancer

October 8, 2014
The genetic fingerprint of a metastatic cancer is constantly changing, which means that the therapy that may have stopped a patient's cancer growth today, won't necessarily work tomorrow. Although doctors can continue to ...

Recommended for you

Scientists discover new method of diagnosing cancer with malaria protein

August 17, 2018
In a spectacular new study, researchers from the University of Copenhagen have discovered a method of diagnosing a broad range of cancers at their early stages by utilising a particular malaria protein that sticks to cancer ...

Researchers find pathways that uncover insight into development of lung cancer

August 17, 2018
Lung cancer is the leading cause of preventable cancer death. A disease of complex origin, lung cancer is usually considered to result from effects of smoking and from multiple genetic variants. One of these genetic components, ...

Developing an on-off switch for breast cancer treatment

August 17, 2018
T-cells play an important role in the body's immune system, and one of their tasks is to find and destroy infection. However, T-cells struggle to identify solid, cancerous tumors in the body. A current cancer therapy is using ...

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.