ROS-scavenging nanozymes for anti-inflammation therapeutics

March 5, 2018, Nanjing University

The dysregulation of reactive oxygen species (ROS) is linked to inflammatory diseases including rheumatoid arthritis, cardiovascular disease and cancer. Live organisms have therefore evolved a number of highly efficient anti-inflammation enzymes with ROS-scavenging capabilities to protect tissues from inflammation-induced damage. However, the natural ROS-scavenging enzymes are sensitive to environmental conditions and are hard to mass produce. To address these challenges, numerous artificial enzymes with ROS-scavenging capabilities have been developed. Among them, ROS-scavenging nanozymes have recently attracted great interest owing to their enhanced stability, multi-functionality and tunable activity.

Nanozymes are catalytic nanomaterials with -mimicking activities. Several nanomaterials have been explored to develop ROS-scavenging nanozymes. For example, ceria nanoparticles (CeO2 NPs) have been demonstrated to possess superoxide dismutase (SOD)-mimicking activities due to the mixed valance states of Ce3+ and Ce4+. Biological studies have revealed that natural Mn SOD is superior to Cu/Zn SOD and Fe SOD, which implies that Mn-based nanozymes may have enhanced ROS-scavenging activities compared with known examples. Despite great promise, only a few Mn-based nanozymes have been reported. Moreover, they have not been used for in vivo anti-inflammation yet.

To tackle these challenges, Professor Wei at Nanjing University and his co-workers have now fabricated Mn3O4 NPs with multiple enzyme mimicking activities. The Mn3O4 nanozymes possessed SOD- and catalase-like activities as well as hydroxyl radical scavenging . Therefore, they scavenged the superoxide radical as well as hydrogen peroxide and the hydroxyl radical. Wei et al. also demonstrated that the Mn3O4 nanozymes were superior to CeO2 nanozymes in term of the ROS-scavenging activities. Moreover, they showed that the Mn3O4 nanozymes not only exhibited excellent ROS removal efficacy in vitro, but also effectively protected live mice from ROS-induced ear inflammation in vivo.

Their studies provided not only a highly efficient ROS-scavenging nanozyme, but also a promising therapeutic strategy for treating inflammation-related diseases.

Explore further: Integrated nanozymes for brain chemistry

More information: 10.1039/c7sc05476a Jia Yao et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation, Chemical Science (2018). DOI: 10.1039/C7SC05476A

Related Stories

Integrated nanozymes for brain chemistry

April 13, 2016
Nanozymes are novel nanomaterials with enzyme mimicking activities, which are superior to natural enzymes and even conventional artificial enzymes. They have attracted considerable attention because they offer the possibility ...

Recommended for you

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Study shows surprise low-level ozone impact on asthma patients

September 21, 2018
A new study led by UNC School of Medicine researchers indicates that ozone has a greater impact on asthma patients than previously thought. The study, published in the Journal of Allergy and Clinical Immunology, recruited ...

Cancer immunotherapy might benefit from previously overlooked immune players

September 20, 2018
Cancer immunotherapy—efforts to boost a patient's own immune system, allowing it to better fight cancer cells on its own—has shown great promise for some previously intractable cancers. Yet immunotherapy doesn't work ...

Gut fungus exacerbates asthma in antibiotic-treated mice

September 20, 2018
A non-pathogenic fungus can expand in the intestines of antibiotic-treated mice and enhance the severity of allergic airways disease, according to a study published September 20 in the open-access journal PLOS Pathogens by ...

Paracetamol use in infancy is linked to increased risk of asthma in some teenagers

September 17, 2018
Children who take paracetamol during their first two years of life may be at a higher risk of developing asthma by the age of 18, especially if they have a particular genetic makeup, according to new research presented at ...

Cord blood clue to respiratory diseases

September 15, 2018
New research has found children born in the last three months of the year in Melbourne may have a greater risk of developing respiratory diseases such as asthma.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.