Genetic counseling and testing proposed for patients with the brain tumor medulloblastoma

May 9, 2018, St. Jude Children's Research Hospital
The Lancet Oncology identified six genes that predispose carriers to develop the brain tumor medulloblastoma. Credit: St. Jude Children's Research Hospital

Researchers have identified six genes that predispose carriers to develop the brain tumor medulloblastoma and have used the discovery to craft genetic counseling and screening guidelines. The study appears today in the journal The Lancet Oncology.

St. Jude Children's Research Hospital, Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Germany, and The Hospital for Sick Children, Toronto, led the research.

Medulloblastoma is the most common malignant childhood brain tumor and one of the leading causes of non-accidental death in U.S. children and adolescents. The tumor includes four main molecular subgroups with different clinical and biological characteristics as well as treatment outcomes. Except in rare cases associated with genetic disorders like Li-Fraumeni syndrome or Gorlin syndrome, medulloblastoma was thought to occur sporadically by chance, usually in infants and children less than 16 years old.

But researchers completed apparently the largest analysis yet of genetic predisposition in a pediatric brain tumor and found that germline variations in six often play a role. The genes include APC, BRCA2 and TP53, which are also associated with an elevated risk for breast, colon, ovarian and other cancers. The findings led the researchers to develop screening and counseling recommendations for patients based on the medulloblastoma molecular subgroups—WNT, sonic hedgehog and group 3 and group 4.

The newly identified predisposition genes account for about 20 percent of the sonic hedgehog subgroup and about 5 percent of cases overall. Germline variations are usually inherited and carried in cells throughout the body.

"One in five patients with sonic hedgehog medulloblastoma had clear germline predispositions that put them and possibly their siblings at risk for developing medulloblastoma and other cancers later in life," said Paul Northcott, Ph.D., an assistant member of the St. Jude Department of Developmental Neurobiology. He and Sebastian Waszak, Ph.D., of the European Molecular Biology Laboratory, Heidelberg, are co-first authors.

The contribution of germline variations in other medulloblastoma subgroups ranged from less than 5 percent in group 3 or group 4 medulloblastoma patients to about 10 percent of patients with WNT medulloblastoma. Overall, long-term survival is about 70 percent for patients with medulloblastoma, but ranges widely from 95 percent for WNT medulloblastoma to 50 percent for patients with group 3.

"Overall, half the patients with damaging germline variations were not identified based on their family histories, which clinicians have depended on," Northcott said. "That highlights the urgent need to make genetic counseling and testing the standard of care for some medulloblastoma patients, particularly those in the sonic hedgehog and WNT subgroups."

Co-author Giles Robinson, M.D., an assistant member of the St. Jude Department of Oncology said: "The screenings can help patients and families understand and manage their lifetime cancer risk."

A photograph showing study authors Paul Northcott, Ph.D., Giles Robinson, M.D. and Amar Gajjar, M.D. Credit: St. Jude Children's Research Hospital / Peter Barta

Identifying predisposition genes

Along with APC, BRCA2 and TP53, the other predisposition genes identified in this study were PALB2, PTCH1 and SUFU. The gene variations are predicted to change the encoded protein and disrupt the genes' normal function.

To find the high-risk genes, researchers compared the prevalence of rare variations in 110 known cancer predisposition genes in medulloblastoma patients from three continents to individuals without cancer. The analysis included whole genome and whole exome sequencing data of 1,022 patients with medulloblastoma. The exome is the portion of the genome that encodes instructions for protein assembly.

The samples included tumor and normal tissue from 800 of the 1,022 patients. Investigators reported no significant difference in patients screened prospectively or retrospectively.

The comparison group included exome sequencing data from more than 58,000 individuals with no cancer diagnoses.

Screening and testing guidelines

The findings led to the following subgroup-based counseling and screening recommendations.

WNT—Genetic counseling about possible high-risk APC germline variations should be offered to certain patients with WNT medulloblastoma. Those are patients without tumor cell (somatic) mutations in the gene CTNNB1, which codes for the protein β-catenin.

Sonic hedgehog—Genetic counseling and testing should be offered to all patients in this subgroup for some or all of the following genes: SUFU, PTCH1, TP53, PALB2 and BRCA2. The analysis also revealed that high-risk germline TP53 variations were a risk factor for medulloblastoma treatment failure.

Group 3 and Group 4—These subgroups account for 65 to 70 percent of all , but less than 5 percent of cases were associated with the cancer predisposition genes. Researchers recommend counseling and testing of PALB2 and BRCA2 in with family histories of breast, ovarian or other cancers associated with mutations in BRCA genes.

Explore further: Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

More information: The Lancet Oncology (2018). DOI: 10.1016/S1470-2045(18)30242-0

Related Stories

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

New pathway identified as a target for precision medicine against a common brain tumor

November 2, 2017
St. Jude Children's Research Hospital scientists have discovered a promising target for precision medicines to block a mechanism that drives several cancers, including about 30 percent of cases of the brain tumor called medulloblastoma. ...

Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018
St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported ...

Study helps explain launch switch for most common malignant pediatric brain tumor

March 29, 2018
A delicate balance during brain development could have profound implications for understanding and treating medulloblastoma, the most common malignant brain tumor affecting children.

Atoh1, a potential Achilles' heel of Sonic Hedgehog medulloblastoma

December 12, 2017
Medulloblastoma is the most common type of solid brain tumor in children. Current treatments offer limited success and may leave patients with severe neurological side effects, including psychiatric disorders, growth retardation ...

Tumor suppressor gene variants identified as cancer 'double whammy' for leukemia patients

January 5, 2018
Newly identified germline variations in a key tumor suppressor gene predispose individuals to develop leukemia as children and leave them with a 1-in-4 chance of developing a second cancer later. St. Jude Children's Research ...

Recommended for you

Research team discovers drug compound that stops cancer cells from spreading

June 22, 2018
Fighting cancer means killing cancer cells. However, oncologists know that it's also important to halt the movement of cancer cells before they spread throughout the body. New research, published today in the journal Nature ...

Higher body fat linked to lower breast cancer risk in younger women

June 21, 2018
While obesity has been shown to increase breast cancer risk in postmenopausal women, a large-scale study co-led by a University of North Carolina Lineberger Comprehensive Cancer Center researcher found the opposite is true ...

Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant

June 21, 2018
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.

Existing treatment could be used for common 'untreatable' form of lung cancer

June 21, 2018
A cancer treatment already approved for use in certain types of cancer has been found to block cell growth in a common form of lung cancer for which there is currently no specific treatment available.

Novel therapy makes oxidative stress deadly to cancer

June 21, 2018
Oxidative stress can help tumors thrive, but one way novel cancer treatments work is by pushing levels to the point where it instead helps them die, scientists report.

Researchers uncover new target to stop cancer growth

June 21, 2018
Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.