New potential target identified to fight acute myeloid leukemia

May 21, 2018, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
AML cell lines expressing MLL-fusion genes stained with Giemsa staining solution before microscopic analysis. Nuclear segmentation and increased granularity are associated with terminal myeloid maturation of the cells upon a shRNA-mediated knockdown of SETD2. Credit: CeMM/Anna Skucha

AML is not a single disease. It is a group of leukemias that develop in the bone marrow from progenitors of specialized blood cells, the so-called myeloid cells. Rapidly growing and dividing, these aberrant cells crowd the bone marrow and bloodstream, which can be fatal within weeks or months if the disease is left untreated. Myeloid cells of various types and stages can become cancerous and cause AML, which makes the condition very heterogeneous and difficult to treat. Thus, finding drug targets that affect as many forms of AML as possible is a prime goal for researchers.

Mutations in the MLL (mixed lineage leukemia) gene are of interest, as they are frequent in AML. They are caused by rearrangements of big chunks of DNA, so-called chromosomal translocations, which can lead to the fusion of two otherwise-separated genes; in the case of the MLL gene, fusions with more than 75 different partner genes were found. Above that, it was known that MLL-fusion proteins act in the context of large protein complexes, which need specific "effector" proteins to exert their oncogenic function—ideal targets for a precise therapy. However, it was not clear whether such critical effectors are common for all MLL-fusion proteins.

The research groups of Florian Grebien from the Ludwig Boltzmann Institute for Cancer Research, Giulio Superti-Furga, Scientific Director of the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and Johannes Zuber, from the Institute of Molecular Pathology, tackled that question in their latest study. They were able to identify common, conserved molecular mechanisms that drive oncogenesis in the context of the large number of different MLL-fusion proteins by characterizing the protein-protein interaction networks of distantly related MLL fusion proteins. Their results were now published in Nature Communications.

The scientists, with CeMM Ph.D.-Student Anna Skucha as first author of the study, characterized the complexes around seven MLL fusion proteins in detail, which revealed 128 conserved interaction partners of MLL fusions. In further functional experiments, that were carried out in collaboration with the IMP Vienna and the Medical University Vienna, they identified the methyltransferase SETD2 as a critical effector of MLL-fusion proteins. Using genomic techniques including CRISPR/Cas9 genome editing, the researchers found that SETD2 loss caused induction of DNA-damage and ultimately cell death in the cancer cells. Moreover, SETD2 loss increased the lethal effect of Pinometostat, a drug that is currently in clinical development for treatment of leukemia patients with MLL fusions. These experiments might pave the way for a more effective therapy in the future using a combination of compounds.

"These data highlight the relevance of combined proteomic-genomic cellular screening to identify critical effectors of genes involved in the development of ," said Florian Grebien, one of the senior author of the study. "Our results establish a novel role for SETD2 in the maintenance of genomic integrity during initiation and progression of MLL-rearranged AML and contribute to further clarification of the molecular mechanisms driving MLL-fusion-dependent leukemogenesis."

Explore further: Novel pathway identified in development of acute myeloid leukemia with poor prognosis

More information: Anna Skucha et al, MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity, Nature Communications (2018). DOI: 10.1038/s41467-018-04329-y

Related Stories

Novel pathway identified in development of acute myeloid leukemia with poor prognosis

April 25, 2018
Acute myeloid leukemia (AML) is a cancer of the blood and bone marrow that comprises 1 percent of all new cancer cases and almost 2 percent of cancer deaths in the U.S. The five-year survival rate for the disease is less ...

Study involving twin sisters provides clues for battling aggressive cancers

February 9, 2014
Analyzing the genomes of twin 3-year-old sisters – one healthy and one with aggressive leukemia – led an international team of researchers to identify a novel molecular target that could become a way to treat recurring ...

Fused genes found in esophageal cancer cells offer new clues on disease mechanisms

August 26, 2016
Despite years of research, cellular mechanisms contributing to cancers like esophageal adenocarcinoma have remained elusive. What has puzzled researchers was how genes in the healthy cells lining the esophagus turned the ...

Protein network signals found to drive myeloid leukemias

June 14, 2017
Researchers have uncovered how mutations in a protein network drive several high-risk leukemias, offering new prospects for novel therapies. An existing drug might be repurposed to treat these leukemias, and the new understanding ...

'Fusion genes' drive formation and growth of colorectal cancer

July 12, 2017
Genetic mutations caused by rearranged chromosomes drive the development and growth of certain colorectal cancers, according to new research conducted by Weill Cornell Medicine investigators.

Recommended for you

'Kiss of death' cancer: How computational geeks may have uncovered a therapy for a deadly disease

June 19, 2018
It's called the 'kiss of death'. Triple negative breast cancer has no targeted drug therapy and, as such, the only hope for these patients is chemotherapy. Triple negative breast cancer is aggressive and deadly. Patients ...

Ovarian cancer cells switched off by 'unusual' mechanism

June 19, 2018
Scientists at the Ovarian Cancer Action Research Centre at Imperial College London have discovered a mechanism that deactivates ovarian cancer cells.

Team discovers gene mutations linked to pancreatic cancer

June 19, 2018
Six genes contain mutations that may be passed down in families, substantially increasing a person's risk for pancreatic cancer. That's according to Mayo Clinic research published in the June 19 edition of the JAMA. However, ...

Breast cancer could be prevented by targeting epigenetic proteins, study suggests

June 19, 2018
Researchers at the Princess Margaret Cancer Centre in Toronto have discovered that epigenetic proteins promote the proliferation of mammary gland stem cells in response to the sex hormone progesterone. The study, which will ...

Targeting the engine room of the cancer cell

June 18, 2018
Researchers at Columbia University Irving Medical Center (CUIMC) have developed a highly innovative computational framework that can support personalized cancer treatment by matching individual tumors with the drugs or drug ...

Study suggests well-known growth suppressor actually fuels lethal brain cancers

June 18, 2018
Scientists report finding a potentially promising treatment target for aggressive and deadly high-grade brain cancers like glioblastoma. But they also say the current lack of a drug that hits the molecular target keeps it ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.