Engineering diseased blood vessels to more accurately test new medications

June 8, 2018, Worcester Polytechnic Institute
Engineering diseased blood vessels to more accurately test new medications
A tube made from self-assembled rings of smooth muscle cells is shown within a bioreactor where it was cultured with flowing media while the rings fused. Credit: Worcester Polytechnic Institute

A research team at Worcester Polytechnic Institute (WPI) is engineering self-assembling human blood vessels that exhibit the symptoms of common cardiac and vascular conditions, like aneurisms and blockages, work that may provide a better way for scientists to test the effectiveness of new medications and, potentially, speed up the development of more effective treatments for life-threatening diseases.

Marsha Rolle, Ph.D., associate professor of biomedical engineering at WPI, heads a laboratory that specializes in growing functioning from human cells. In the current project, funded by a three-year, $437,700 award from the National Institutes of Health's National Heart Lung and Blood Institute (NHLBI), her team is using the vascular tissue engineering techniques she previously developed to create vessels that exhibit the characteristics of vascular conditions like aneurisms and blockages. The idea is to create better model systems for testing the ability of potential medications to inhibit or even reverse these prevalent and potentially fatal vascular problems.

"We want to build blood vessels that can replicate what happens when they're diseased," Rolle said. "And diseased vessels are a critical problem. If it's in the coronary artery, then you affect the health of the heart. If it's in an artery leading to the brain, you could have a stroke. This could be a major breakthrough in how we study and develop vascular medications. It could lead to the development of that could save lives."

Since cardiovascular disease is the leading cause of death in the United States, there is an urgent need to find new and more effective treatments. To aid in their development, there is a need for three-dimensional disease models that closely resemble functioning human organs to more accurately assess the effects of new drugs, something that cannot be accomplished as well with animal models or cells cultured in a dish. Rolle, who has focused on vascular tissue engineering research since 2004, is now using techniques she earlier developed to grow normal blood vessels to create ones that can mimic in the lab what happens to diseased or damaged blood vessels in the human body.

She has already developed methods for creating blood vessels that could be used to replace damaged veins, for example for repairing vascular access grafts for dialysis. This same technology could be used to make any tubular organs, including bronchial tubes, arteries, ureters, and tracheas.

Engineering diseased blood vessels to more accurately test new medications
Biomedical engineer Marsha Rolle has developed pioneering techniques for growing functioning blood vessels from human cells. Credit: Worcester Polytechnic Institute

To create normal blood vessels, Rolle grows human smooth muscle cells in custom-made wells, shaped like tiny Bundt pans, to produce tissue rings with a 2-millimeter hole in the middle. Fed with a standard culture medium, the cells self-assemble into ring-shaped tissues that, when stacked, fuse to form tubes.

To bioengineer blood vessels with flaws, such as aneurisms and stenosis (a narrowing of the blood ), Rolle and her team adds microspheres loaded with special growth factors to selected rings. The growth factors will ultimately be used to trigger cell proliferation in the sections of the ring containing the microspheres, producing localized flaws.

"This is unique work because we can customize individual ring units so we can put a diseased region in one small area of the vascular tube, which is what doctors would likely see in a patient," said Hannah Strobel, who recently received her Ph.D. in biomedical engineering at WPI and has been the primary student researcher on Rolle's project. "It's really important that we affect only one small region of the vessel because of the way it affects changes in blood flow and how diseases progress."

The research could speed the process of discovering new drugs for cardiovascular disease, Rolle said, noting that it currently takes an average of 10 years to develop a new medication. The problem, she added, is exacerbated by the fact that animal testing, which is the way most new drugs are tested, is not always an accurate indicator of how human blood vessels will respond to the same drugs. In fact, 90 percent of drugs that are successful in animal tests do not work in humans.

John Keaney Jr., MD, chief of cardiovascular medicine at UMass Memorial Health Care and professor of medicine at UMass Medical School, is collaborating with Rolle on her blood vessel research.

Engineering diseased blood vessels to more accurately test new medications
Hannah Strobel and undergraduate Paige Waligora ’20 examine a cross-section of a finished blood vessel under a microscope slide, looking at the organization and structure of the tissue. Credit: Worcester Polytechnic Institute
"One of the hallmarks of making advances in medicine is to have models of the diseases so you can develop new treatments," said Keaney, who has researched blood vessel function for 25 years and worked with Rolle for the past 10 years. "Testing medicines and procedures in patients is both risky and time consuming. Having models that accurately reflect what is happening in patients' bodies is very advantageous. It's certainly important work that could bring things to patients more quickly and safely."

As a first step, Rolle plans to use the engineered blood vessels that exhibit disease states to test existing vascular medications—including those that have proven effective in people and those that were successful in animal tests but not successful in human clinical trials—to see if the engineered blood vessel models can better predict whether a given medication will be an effective treatment in human patients.

"Ultimately, if this work does succeed, it could be a tool for screening large numbers of potential drugs," Strobel said. Pharmaceutical companies can see how their drugs will react on human tissue and possibly bypass typical animal studies, which often aren't accurate indicators."

One of the factors that sets Rolle's work apart is her use of self-assembling technology. A long-standing limitation in tissue engineering has been the field's reliance on synthetic scaffolds. While scaffolds provide a base for the tissue to build on, they also can lead to inflammation, scarring, and infection. Rolle's self-assembling technology for three-dimensional tissue constructs uses cells' ability to produce their own natural extracellular matrix. Since this material, which provides strength to the developing vessel, is produced by the cells themselves, it should be less likely to be rejected by the body.

Another issue with artificial scaffold material is that the scaffolding makes up the bulk of the vessels produced, preventing them from reacting to disease or damage like a natural vessel would and, therefore, making them less useful for testing cardiac medication.

Explore further: Researchers engineer natural windpipe replacement alternative to synthetic scaffolding now being used

Related Stories

Researchers engineer natural windpipe replacement alternative to synthetic scaffolding now being used

February 14, 2018
Biomedical engineers at Case Western Reserve University are growing tracheas by coaxing cells to form three distinct tissue types after assembling them into a tube structure-without relying on scaffolding strategies currently ...

Stem cells yield nature's blueprint for body's vasculature

May 30, 2017
In the average adult human, there are an estimated 100,000 miles of capillaries, veins and arteries—the plumbing that carries life-sustaining blood to every part of the body, including vital organs such as the heart and ...

Blood vessel-on-a-chips show anti-cancer drug effects in human cells

January 31, 2018
Researchers at the Institute of Industrial Science (IIS), the University of Tokyo, CNRS and INSERM, report a new organ-on-a-chip technology for the study of blood vessel formation and drugs targeting it. The technology recreates ...

Study of blood vessel growth may open new pathway to therapies

May 4, 2017
A new Yale-led study detailing how blood vessels develop could lead to novel treatments of cardiovascular diseases as well as cancer.

New drug could help prevent artery disease in high-risk patients

December 21, 2016
According to the American Heart Association, approximately 2,200 Americans die each day from heart attacks, strokes and other cardiovascular diseases. The most common cause is blocked blood vessels that can no longer supply ...

Recommended for you

Novel genetic study sheds new light on risk of heart attack

October 12, 2018
Loss of a protein that regulates mitochondrial function can greatly increase the risk of myocardial infarction (heart attack), Vanderbilt scientists reported Oct. 3 in the journal eLife.

Researchers say ritual for orthodox Jewish men may offer heart benefits

October 11, 2018
A pilot study led by researchers at the University of Cincinnati (UC) College of Medicine suggests Jewish men who practice wearing tefillin, which involves the tight wrapping of an arm with leather banding as part of daily ...

Markers of dairy fat consumption linked to lower risk of type two diabetes

October 10, 2018
Higher levels of biomarkers of dairy fat consumption are associated with a lower risk of developing type 2 diabetes, according to new research published today in PLOS Medicine. The study, in more than 60,000 adults, was undertaken ...

Seed oils are best for LDL cholesterol

October 9, 2018
If you want to lower your low-density lipoprotein cholesterol, called LDL or, colloquially, "bad cholesterol," the research is clear about one thing: You should exchange saturated fats with unsaturated fat. If you want to ...

Micropeptide restores heart function in mice

October 9, 2018
Researchers have discovered a micropeptide molecule that can restore normal heart function in mice, according to a study in eLife.

New risk test for sepsis for heart patients

October 5, 2018
Nearly one in four deaths in people with heart failure are caused by sepsis, according to new research.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.