First human scanned with next-generation 3-D colour medical scanner

July 10, 2018, University of Canterbury
First human scanned with next-generation 3-D colour medical scanner
Father and son scientists Professors Phil and Anthony Butler invented the MARS spectral x-ray scanner. Pictured is Prof Phil Butler's wrist (including his watch). Credit: University of Canterbury

The first human has been scanned with a revolutionary new 3D colour medical scanner invented in New Zealand by father and son scientists from the Universities of Canterbury and Otago.

The MARS spectral x-ray scanner will revolutionise medical imaging globally – and as a result the diagnosis and treatment of diseases such as cancer and heart disease - because it provides far greater detail of the body's chemical components.

In the next few months, Christchurch orthopaedic and rheumatology patients will be scanned by the machine in a world-first clinical trial.

Father and son scientists Professors Phil and Anthony Butler invented the MARS spectral x-ray scanner. Professor Phil Butler is a physicist working at the University of Canterbury. His son Anthony is a radiologist and Professor at both the Universities of Otago and Canterbury.

The Butlers adapted technology used by the European Organization for Nuclear Research (CERN) in the hunt for the 'God particle' into a medical scanner.

The MARS CT scanner produces images with significantly improved diagnostic information. It measures the x-ray spectrum to produce colour images instead of black-and-white ones, and shows different components of body parts such as fat, water, calcium, and disease markers.

Small versions of the scanner that can house tissue samples are already in use in research institutions around the world. The first human has now been scanned through a larger form of the scanner. Professor Phil Butler was the first person to be scanned. His ankle and wrist were imaged.

UC Professors Phil (right) and Anthony Butler adapted technology used by the European Organization for Nuclear Research (CERN) in the hunt for the ‘God particle’ into a medical scanner. Credit: University of Canterbury

The next step in development is an imminent clinical trial where orthopaedic and rheumatology patients from Christchurch will be scanned. This will allow the MARS team to compare the images produced by their scanner with the technology currently used in New Zealand hospitals.

The Butlers and their growing team of scientists have been supported over the past decade of developing the machine by the Universities of Otago and Canterbury; the Ministry of Business, Innovation and Employment; and GE Healthcare. MARS Bioimaging Ltd (MBI) has commercialised the product.

Professor Anthony Butler says after a decade in development it is really exciting to have reached a point where it's clear the technology could be used for routine patient care. 

"X-ray spectral information allows health professionals to measure the different components of body parts such as fat, water, calcium, and disease markers. Traditional black-and-white x-rays only allow measurement of the density and shape of an object," Professor Anthony Butler says.

"So far researchers have been using a small version of the MARS to study cancer, bone and joint health, and vascular diseases that cause heart attacks and strokes. In all of these studies, promising early results suggest that when spectral imaging is routinely used in clinics it will enable more accurate diagnosis and personalisation of treatment."

Professor Butler says CERN's Medipix3 technology sets the machine apart diagnostically because its small pixels and accurate energy resolution mean it can get images no other imaging tool can.

"As a new imaging device, a new microscope if you like, biomedical researchers can non-invasively see different kinds of detail inside patients," he says.

Explore further: CERN Colour X-ray Technology Set to Save Lives

More information: For more information, see www.marsbioimaging.com/mars/media-pack/2018

Related Stories

CERN Colour X-ray Technology Set to Save Lives

December 15, 2009
(PhysOrg.com) -- Medical studies are soon to start with the MARS scanner, a revolutionary CT scanner developed by the University of Canterbury, New Zealand. The scanner, which incorporates technology developed at the world's ...

MRI/PET scanner combo

March 7, 2008
Two kinds of body imaging -- positron emission tomography (PET) and magnetic resonance imaging (MRI) -- have been combined for the first time in a single scanner.

Mini-CT scanner developed as a teaching tool

March 15, 2012
Biophysics professors at Western University, in London, Canada, have developed a CT (Computed Tomography) scanner small enough to sit on a desk. Jerry Battista, Chair of the Department of Medical Biophysics at the Schulich ...

New wearable brain scanner allows patients to move freely for the first time

March 21, 2018
A new generation of brain scanner, that can be worn like a helmet allowing patients to move naturally whilst being scanned, has been developed by researchers at the Sir Peter Mansfield Imaging Centre, University of Nottingham ...

The transformation of cancer imaging

December 17, 2015
Taken by Wilhelm Roentgen in 1895, the first X-ray produced was of his wife's hand. Roentgen received the first Nobel Prize in physics for his work, but his discovery of X-ray beams also changed the medical profession far ...

Fast and accurate infrared 3-D scanner

May 2, 2017
Infrared 3-D scanners have been used in video games for quite some time. Whereas in video games the scanners are, for example, only able to identify if a player throws his arms up in the air while playing virtual volleyball, ...

Recommended for you

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

Blood biomarker can help predict disease progression in patients with COPD

July 12, 2018
Some patients with COPD demonstrate signs of accelerated aging. In a new study published in the journal CHEST researchers report that measuring blood telomeres, a marker of aging of cells, can be used to predict future risk ...

Rogue molecules provoke out-of-control scar tissue, strangle organs

July 12, 2018
Normal scar tissue forms to heal an internal wound and quietly retreats when the job is done. But in many common diseases—kidney, liver and lung fibrosis—the scar tissue goes rogue and strangles vital organs. These diseases ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.