Research on mutation 'hotspots' in DNA could lead to new insights on cancer risks

July 30, 2018, Indiana University
E. coli bacteria was used to study the sequences in DNA where the risk for mutation is significantly elevated. Credit: National Institute of Allergy and Infectious Diseases

New research from Indiana University has identified "hotspots" in DNA where the risk for genetic mutations is significantly elevated.

These mutations arise because "typos" can occur as DNA replicates during cellular division. A recent analysis, which found that random mistakes in DNA play a large role in many cancer types, underscores the need to understand more about what triggers these errors.

The IU-led research, conducted in E. coli, appears in two papers in the "Highlights" section of the August issue of the journal Genetics. The "hotspots" identified are specific to E. coli and related bacterium, but the work could provide a roadmap to identifying similar trouble spots in human DNA.

"This research gets us closer to understanding how the cell's replication machinery interacts with DNA," said Patricia Foster, a professor emerita in the IU Bloomington College of Arts and Sciences' Department of Biology. "If you can understand exactly why an error occurs at a particular point on the DNA in bacteria, it gets you closer to understanding the general principles."

Foster is the first author on one of the two papers. The other paper's first author is Brittany Niccum, a Ph.D. student in Foster's lab at the time of the study.

The risk for cancer from DNA replication errors is highest in certain tissues—like the prostate and bones—where a higher rate of cellular renewal means there are more opportunities for mistakes to occur as the DNA is copied.

"There are parts of the genome that contain 'cancer drivers,' where changes in the DNA can allow tumor cells to proliferate," Foster said. "If you could know what sections of the DNA had a higher risk for mutation, you might be able to focus your analysis on these 'hotspots' to predict what will happen next."

In E. coli, the researchers found that the chances of DNA replication errors were up to 18 times more likely in DNA sequences where the same chemical "letter" in the sequence repeats multiple times in a row. They also found that errors were up to 12 times more likely in DNA sequences with a specific pattern of three letters.

These patterns of letters in the DNA sequence had been previously identified as common locations for replication errors. But Foster said the sheer volume of data in the new studies—with analysis across the bacteria's entire genome of 30,000 mutations accumulated during 250,000 generations—provide the "statistical weight" required to pinpoint the error rates with an unprecedented level of accuracy.

The studies also underline the importance of two systems in DNA replication: a "proofreader" enzyme and a molecular pathway called mismatch repair. Both serve as a defense against mistakes from the enzyme—called DNA polymerase—that copies the genome at a staggering rate of 1,000 letters per second.

This proofreader function resets the copying process after detecting a mistake. The IU researchers found that "switching off" this function caused 4,000 times more errors. Switching off , a backup system for the proofreader, caused 200 times more errors.

"When we switch off these backup systems, we start to see 'pure' errors—the places where the polymerase is more likely to make a mistake without intervention from other processes, " Foster said. "Until now, I don't think anyone could truly see the seriousness of these error hotspots in DNA."

Explore further: DNA correction mechanism is more efficient in the most important regions of the genome

More information: Patricia L. Foster et al, Determinants of Base-Pair Substitution Patterns Revealed by Whole-Genome Sequencing of DNA Mismatch Repair DefectiveEscherichia coli, Genetics (2018). DOI: 10.1534/genetics.118.301237

Brittany A. Niccum et al. The Spectrum of Replication Errors in the Absence of Error Correction Assayed Across the Whole Genome ofEscherichia coli, Genetics (2018). DOI: 10.1534/genetics.117.300515

Related Stories

DNA correction mechanism is more efficient in the most important regions of the genome

November 7, 2017
A study published by IRB Barcelona in Nature Genetics demonstrates that the error (mutation) surveillance and repair system shows greater efficiency in the protein-coding regions of genes.

Selective protection of genetic information by epigenetic system

August 29, 2016
DNA is replicated to pass genetic information to the daughter cells during cell proliferation. Replication errors, if not repaired, can lead to genetic mutations. For an individual organism, some DNA mutations may cause disease, ...

Tracking DNA helps scientists trace origins of genetic errors

January 27, 2015
Scientists have shed light on how naturally occurring mutations can be introduced into our DNA.

Error rate 7.4 percent in speech recognition-assisted notes

July 10, 2018
(HealthDay)—The error rate in speech recognition (SR)-assisted documentation is 7.4 percent, according to a study published online July 6 in JAMA Network Open.

A 'gap in the armor' of DNA may allow enzyme to trigger cancer-causing mutations

February 1, 2016
Research at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.

Scientists find the external environment, oxidation greatest threats to DNA

October 13, 2015
A study led by Indiana University biologist Patricia Foster and colleagues has found that forces in the external environment and oxidation are the greatest threats to an organism's ability to repair damage to its own DNA.

Recommended for you

Genetic link discovered between circadian rhythms and mood disorders

August 15, 2018
Circadian rhythms are regular 24-hour variations in behaviour and activity that control many aspects of our lives, from hormone levels to sleeping and eating habits.

Ovarian cancer genetics unravelled

August 14, 2018
Patterns of genetic mutation in ovarian cancer are helping make sense of the disease, and could be used to personalise treatment in future.

New genome-editing strategy could lead to therapeutics

August 14, 2018
Researchers at UMass Medical School have developed a genome-editing strategy to correct disease-causing DNA mutations in mouse models of human genetic diseases, according to research published in the Aug. 18 edition of Nature ...

Study reveals broad 'genetic architectures' of traits and diseases

August 13, 2018
Scientists at Johns Hopkins Bloomberg School of Public Health have developed a powerful method for characterizing the broad patterns of genetic contributions to traits and diseases. The new method provides a "big picture" ...

Genetic tools uncover cause of childhood seizure disorder missed by other methods

August 13, 2018
Early childhood seizures result from a rare disease that begin in the first months of life. Researchers at University of Utah Health have developed high-tech tools to uncover the genetic cause of the most difficult to diagnose ...

Researchers predict risk for common deadly diseases from millions of genetic variants

August 13, 2018
A research team at the Broad Institute of MIT and Harvard, Massachusetts General Hospital (MGH), and Harvard Medical School reports a new kind of genome analysis that could identify large fractions of the population who have ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.